It is an important practical problem to accurately recognize whether biological tissue is denatured during high intensity focused ultrasound (HIFU) treatment. Ultrasonic scattering echo signals are related to some physical properties of biological tissues. According to the characteristics of ultrasonic scattering echo signals, the recognition of denatured biological tissues is studied based on the variational mode decomposition (VMD) and multi-scale permutation entropy (MPE) in this paper. The ultrasonic echo signals are decomposed into various modal components by the VMD. The noise components and the useful components are separated according to the power spectrum information entropy of various modal components. The separated useful signals are reconstructed and the MPE are extracted. Furthermore, Gustafson-Kessel (GK) fuzzy clustering analysis is employed to obtain the standard clustering center, and the recognition of denatured biological tissues is carried out by Euclid approach degree and principle of proximity. The proposed method is applied to ultrasonic scattering echo signal during HIFU treatment. In order to determine the parameters of MPE algorithm for ultrasonic scattering echo signals, the embedding dimension of the MPE is discussed, and the scale factor of the MPE algorithm is optimized by genetic algorithm. When the delay time and the embedding dimension are 2 and 7 respectively, the MPE values decrease with scale factor increasing. Assuming that the scale factor is 12 from optimization results, the 293 ultrasonic scattering echo signals from normal tissues and denatured tissues are analyzed by the MPE. It is found that the MPE values of the denatured tissues are higher than those of the normal tissues. The MPE can be used to distinguish normal tissues and denatured tissues. Comparing with the recognition methods of the EMD-MPE-GK fuzzy clustering method and the VMD-WE-GK fuzzy clustering, the proposed method has good clustering performance and separability. Its partition coefficient (PC) is close to 1 and the Xie-Beni (XB) index is smaller. There are fewer feature points in the overlap region between MPE features of denatured tissues and normal tissues. The recognition results of denatured biological tissues in this experimental environment show that the recognition rate based on this method is higher, reaching up to 93.81%.
Identification of denatured biological tissue is crucial to high intensity focused ultrasound (HIFU) treatment. It is not easy for intercepting ultrasonic scattered echo signals from HIFU treatment region. Therefore, this paper employed time-frequency entropy based on generalized S-transform (GST) to intercept ultrasonic echo signals. First, the time-frequency spectra of ultrasonic echo signal is obtained by GST, which is concentrated around the real instantaneous frequency of the signal. Then the time-frequency entropy is calculated based on time-frequency spectra. The experimental results indicate that the time-frequency entropy of ultrasonic echo signal will be abnormally high when ultrasonic signal travels across the boundary between normal region and treatment region in tissues. Ultrasonic scattered echo signals from treatment region can be intercepted by time-frequency entropy. In addition, the refined composite multi-scale weighted permutation entropy (RCMWPE) is proposed to evaluate the complexity of nonlinear time series. Comparing with multi-scale permutation entropy (MPE) and multi-scale weighted permutation entropy (MWPE), RCMWPE not only measures complexity of signal including amplitude information, but also improves the stability and reliability of multi-scale entropy. The RCMWPE and MPE are applied to 300 cases of actual ultrasonic scattered echo signals (including 150 cases in normal status and 150 cases in denatured status). It is found that the RCMWPE and MPE values of denatured tissues are higher than those of the normal tissues. Both RCMWPE and MPE can be used to distinguish normal tissues and denatured tissues. However, there are fewer feature points in the overlap region between RCMWPE of denatured tissues and normal tissues compared with MPE. The intra-class distance and the inter-class distance of RCMWPE are less and greater respectively than MPE. The difference between denatured tissues and normal tissues is more obvious when RCMWPE is used as the characteristic parameter. The results of this study will be helpful to guide doctors to obtain more accurate assessment of treatment effect during HIFU treatment.
This paper investigates the effects of risk orientation (RO) and social value orientation (SVO) on cooperation and the process of making the decision in a public goods dilemma (PGD). We found in Study 1 that risk-seeking prosocials were more cooperative than risk-averse prosocials in a simultaneous PGD. In Study 2, we found the same effect of RO on cooperation in a real-time PGD. Moreover, we found that risk-seeking prosocials, compared with their risk-averse counterparts, took less time to make decisions and observed fewer preceding cooperation choices before making their decisions. Mediation analysis confirms our model based on the change of K’ index in real-time PGD: The number of preceding cooperation choices being observed by a player mediated the effect of RO on cooperation among prosocials that risk-seekers were more cooperative than risk-averse participants. Our studies illustrate that individual differences such as RO and SVO play an important role in decision processes in PGD that subsequently affects cooperation decisions.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.