Background:Most studies of meat and colorectal adenoma have investigated prevalent events from a single screening, thus limiting our understanding of the role of meat and meat-related exposures in early colorectal carcinogenesis.Methods:Among participants in the screening arm of the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial who underwent baseline and follow-up sigmoidoscopy (n=17 072), we identified 1008 individuals with incident distal colorectal adenoma. We calculated odds ratios (ORs) and 95% confidence intervals (95% CIs) for associations between meat and meat-related components and incident distal colorectal adenoma using multivariate logistic regression.Results:We observed suggestive positive associations for red meat, processed meat, haeme iron, and nitrate/nitrite with distal colorectal adenoma. Grilled meat (OR=1.56, 95% CI=1.04–2.36), well or very well-done meat (OR=1.59, 95% CI=1.05–2.43), 2-amino-1-methyl-6-phenyl-imidazo[4,5-b]pyridine (PhIP) (OR=1.75, 95% CI=1.17–2.64), benzo[a]pyrene (OR=1.53, 95% CI=1.06–2.20), and total mutagenic activity (OR=1.57, 95% CI=1.03–2.40) were positively associated with rectal adenoma. Total iron (diet and supplements) (OR=0.69, 95% CI=0.56–0.86) and iron from supplements (OR=0.65, 95% CI=0.44–0.97) were inversely associated with any distal colorectal adenoma.Conclusion:Our findings indicate that several meat-related components may be most relevant to early neoplasia in the rectum. In contrast, total iron and iron from supplements were inversely associated with any distal colorectal adenoma.
Although systematic therapeutic approaches have reduced cancer-associated mortality, metastatic breast cancer can still evade therapy, particularly triple-negative breast cancer, which remains associated with high rates of cancer metastasis and has the worst clinical prognosis. Lipocalin 2 (LCN2) is a secreted glycoprotein that transports small lipophilic ligands. Its abnormal expression serves critical roles in the epithelial-to-mesenchymal transition process, angiogenesis, and cell migration and invasion in breast cancer. Notably, LCN2 functions as an initiator of carcinogenesis and metastasis by involving multiple signaling pathways. The present review aims to summarize research findings on the abnormal expression of LCN2 in breast cancer progression. Furthermore, the review highlights the latest developments of potential LCN2-targeting agents and proposed LCN2-associated molecular mechanisms with regard to breast cancer invasion and metastasis.
Natural resources of zeaxanthin are extremely limited. A Chlorella zofingiensis mutant (CZ-bkt1), which could accumulate high amounts of zeaxanthin, was generated and characterized. CZ-bkt1 was achieved by treating the algal cells with a chemical mutagen followed by a color-based colony-screening approach. CZ-bkt1 was found to consist of a dysfunctional carotenoid ketolase, leading to the accumulation of zeaxanthin rather than to its downstream ketocarotenoid astaxanthin. Light irradiation, glucose, NaCl, and nitrogen deficiency all induced CZ-bkt1 to accumulate zeaxanthin. CZ-bkt1 accumulated zeaxanthin up to 7.00 ± 0.82 mg/g when induced by high-light irradiation and nitrogen deficiency and up to 36.79 ± 2.23 mg/L by additional feeding with glucose. Furthermore, in addition to zeaxanthin, CZ-bkt1 also accumulated high amounts of β-carotene (7.18 ± 0.72 mg/g or 34.64 ± 1.39 mg/L) and lutein (13.81 ± 1.23 mg/g or 33.97 ± 2.61 mg/L). CZ-bkt1 is the sole species up to date with the ability to accumulate high amounts of the three carotenoids that are essential for human health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.