Human coronaviruses (HCoV) OC43, 229E, NL63, and HKU1 are common respiratory viruses which cause various respiratory diseases, including pneumonia. There is a paucity of evidence on the epidemiology and clinical manifestations of these four HCoV strains worldwide. We collected 11,399 throat swabs from hospitalized children with acute respiratory tract infection from July 2009 to June 2016 in Guangzhou, China. These were tested for four strains of HCoV infection using real-time polymerase chain reaction (PCR). HCoV-positive patients were then tested for 11 other respiratory pathogens. 4.3% (489/11399) of patients were positive for HCoV, of which 3.0% were positive for OC43 (346/11399), 0.6% for 229E (65/11399), 0.5% for NL63 (60/11399), and 0.3% for HKU1 (38/11399). Patients aged 7–12 months had the highest prevalence of HCoV and OC43 when compared with other age groups (p < 0.001). The peak seasons of infection varied depending on the HCoV strain. Patients infected with a single strain of HCoV infection were less likely to present fever (≥ 38 °C) (p = 0.014) and more likely to present pulmonary rales (p = 0.043) than those co-infected with more than one HCoV strain or other respiratory pathogens. There were also significant differences in the prevalence of certain symptoms, including coughing (p = 0.032), pneumonia (p = 0.026), and abnormal pulmonary rales (p = 0.002) according to the strain of HCoV detected. This retrospective study of the prevalence of four HCoV strains and clinical signs among a large population of pediatric patients in a subtropical region of China provides further insight into the epidemiology and clinical features of HCoV.
PIWI interacting RNAs (piRNAs) are highly expressed in germline cells and are involved in maintaining genome integrity by silencing transposons. These are also involved in DNA/histone methylation and gene expression regulation in somatic cells of invertebrates. The functions of piRNAs in somatic cells of vertebrates, however, remain elusive. We found that snoRNA-derived and C (C′)/D′ (D)-box conserved piRNAs are abundant in human CD4 primary T-lymphocytes. piRNA (piR30840) significantly downregulated interleukin-4 (IL-4) via sequence complementarity binding to pre-mRNA intron, which subsequently inhibited the development of Th2 T-lymphocytes. Piwil4 and Ago4 are associated with this piRNA, and this complex further interacts with Trf4-Air2-Mtr4 Polyadenylation (TRAMP) complex, which leads to the decay of targeted pre-mRNA through nuclear exosomes. Taken together, we demonstrate a novel piRNA mechanism in regulating gene expression in highly differentiated somatic cells and a possible novel target for allergy therapeutics.
BackgroundGroup 2 innate lymphoid cells (ILC2s) were closely associated with asthma. However, there were no perspective studies about the effects of glucocorticoid on ILC2s in asthma patients. Our objective was to perform a perspective study and evaluate the ILC2 activity after glucocorticoid therapy in asthma patients.MethodsThe asthma and asthma with allergic rhinitis patients were treated with glucocorticoid for 3 months. The circulating ILC2 levels were evaluated. The effects of glucocorticoid on ILC2s and possible signalling pathways were investigated in vitro.ResultsThe patients were well‐controlled, and the high ILC2 levels were significantly decreased at 1 and 3 months after treatment. Peripheral blood monocytes from allergic patients produced dramatic IL‐5, IL‐13 and IL‐9 in response to IL‐25, IL‐33 plus IL‐2, and glucocorticoid significantly decreased their levels. Moreover, ILC2s were identified to be the predominant source of IL‐5, IL‐13 and IL‐9, and glucocorticoid treatment was able to reverse their high levels. STAT3, STAT5, STAT6, JAK3 and MEK signalling pathways were proved to be involved in regulating ILC2 activity under the glucocorticoid treatment.ConclusionThe data suggested that glucocorticoid administration could be effective in treating asthma by regulating ILC2s via MEK/JAK‐STAT signalling pathways. This provides a new understanding of glucocorticoid application in regard to allergic diseases.
The goal of the present study was to investigate the role of M1 macrophages in acute lung injury (ALI). To address this, we used lipopolysaccharide (LPS)-treated wild-type and CD11b-DTR mice, and examined their M1 macrophage levels, and the extent of their inflammation and pulmonary injuries. In addition, we evaluated pulmonary function by measuring the expressions of SP-A and SP-B in infiltrated M1 macrophages. Finally, we co-cultured the mouse type II-like alveolar epithelial cells (AT-II) and mouse pulmonary microvascular endothelial cells (PMECs) with M1 macrophages in the presence of TNF-α or H2O2 and assessed them for viability and apoptosis. After LPS treatment, we observed that the number of pulmonary M1/M2 macrophages and the serum levels of interleukin-1β (IL-1β), tumor necrosis factor α (TNF-α), and reactive oxygen species (ROS) significantly increased. Furthermore, the increase in cytokines was accompanied with the initiation of lung injury indicated by the decreased levels of SP-A and SP-B. In macrophage-depleted CD11b-DTR mice, ALI was attenuated, serum levels of IL-1β, TNF-α and ROS were reduced, and lung levels of monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-2 (MIP-2) were decreased. After administering TNF-α and H2O2, the proapoptotic effect of M1 macrophages on AT-II or PMECs significantly increased, the cell viabilities significantly decreased, and apoptosis significantly increased. Our results suggest that M1 macrophages are recruited to the lungs where they significantly contribute to an increase in TNF-α and ROS production, thus initiating ALI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.