Low temperature is one of the most severe environmental factors that impair plant growth and agricultural production. To investigate how Thellungiella halophila, an Arabidopsis-like extremophile, adapts to cold stress, a comparative proteomic approach based on two-dimensional electrophoresis was adopted to identify proteins that changed in abundance in Thellungiella rosette leaves during short term (6 h, 2 and 5 days) and long term (24 days) exposure to cold stress. Sixty-six protein spots exhibited significant change at least at one time point and maximal cold stress induced-proteome change was found in long-term cold stress group while the minimal change was found in 6-h cold treatment group. Fifty protein spots were identified by mass spectrometry analysis. The identified proteins mainly participate in photosynthesis, RNA metabolism, defense response, energy pathway, protein synthesis, folding and degradation, cell wall and cytoskeleton and signal transduction. These proteins might work cooperatively to establish a new homeostasis under cold stress. Nearly half of the identified cold-responsive proteins were associated with various aspects of chloroplast physiology suggesting that the cold stress tolerance of T. halophila is achieved, at least partly, by regulation of chloroplast function. All protein spots involved in RNA metabolism, defense response, protein synthesis, folding and degradation were found to be upregulated markedly by cold treatment, indicating enhanced RNA metabolism, defense and protein metabolism may play crucial roles in cold tolerance mechanism in T. halophila.
BackgroundOur previous study reported that microRNA-26a (miR-26a) inhibited tumor progression by inhibiting tumor angiogenesis and intratumoral macrophage infiltration in hepatocellular carcinoma (HCC). The direct roles of miR-26a on tumor cell invasion remain poorly understood. In this study, we aim to explore the mechanism of miR-26a in modulating epithelial-mesenchymal transition (EMT) in HCC.MethodsIn vitro cell morphology and cell migration were compared between the hepatoma cell lines HCCLM3 and HepG2, which were established in the previous study. Overexpression and down-regulation of miR-26a were induced in these cell lines, and Western blot and immunofluorescence assays were used to detect the expression of EMT markers. Xenograft nude mouse models were used to observe tumor growth and pulmonary metastasis. Immunohistochemical assays were conducted to study the relationships between miR-26a expression and enhancer of zeste homolog 2 (EZH2) and E-cadherin expression in human HCC samples.ResultsDown-regulation of miR-26a in HCCLM3 and HepG2 cells resulted in an EMT-like cell morphology and high motility in vitro and increased in tumor growth and pulmonary metastasis in vivo. Through down-regulation of EZH2 expression and up-regulation of E-cadherin expression, miR-26a inhibited the EMT process in vitro and in vivo. Luciferase reporter assay showed that miR-26a directly interacted with EZH2 messenger RNA (mRNA). Furthermore, the expression of miR-26a was positively correlated with E-cadherin expression and inversely correlated with EZH2 expression in human HCC tissue.ConclusionsmiR-26a inhibited the EMT process in HCC by down-regulating EZH2 expression.
BackgroundMonoacylglycerol lipase (MAGL), a critical lipolytic enzyme, has emerged as a key regulator of tumor progression, yet its biological function and clinical significance in hepatocellular carcinoma (HCC) is still unknown.MethodsIn this study, we used a tissue microarray containing samples from 170 HCC patients to evaluate the expression of MAGL and its correlation with other clinicopathologic characteristics. In addition, we investigated the regulating effects of MAGL on various HCC lines. Finally, we identified the NF-κB signaling pathway participated in MAGL-mediated epithelial-mesenchymal transition (EMT) using HCC cell lines with different metastatic potentials.ResultsThe expression of MAGL was significantly higher in HCC tumors than in matched peritumor tissues. Specifically, high MAGL expression was found in tumors with larger tumor size, microvascular invasion, poor differentiation, or advanced TNM stage. In addition, the clinical prognosis for the MAGLhigh group was markedly poorer than that for the MAGLlow group in the 1-, 3-, and 5-year overall survival times and recurrence rates of HCC patients. MAGL expression was an independent prognostic factor for both survival and recurrence after curative resection. Furthermore, the upregulation of MAGL in HCC cells promoted cell growth and invasiveness abilities, and accompanied by EMT. In contrast, downregulation of MAGL obviously inhibited these characteristics. Moreover, further investigations verified that MAGL facilitates HCC progression via NF-κB-mediated EMT process.ConclusionsOur findings demonstrate MAGL could promote HCC progression by the induction of EMT and suggest a potential therapeutic target, as well as a biomarker for prognosis, in patients with HCC.Electronic supplementary materialThe online version of this article (doi:10.1186/s13045-016-0361-3) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.