Tumor-associated macrophages (TAMs) are essential cellular components within tumor microenvironment (TME). TAMs are educated by TME to transform to M2 polarized population, showing a M2-like phenotype, IL-10high, IL-12low, TGF-βhigh. STAT3 signaling triggers crosstalk between tumor cells and TAMs, and is crucial for the regulation of malignant progression. In our study, legumain-targeting liposomal nanoparticles (NPs) encapsulating HC were employed to suppress STAT3 activity and “re-educate” TAMs, and to investigate the effects of suppression of tumor progression in vivo. The results showed that TAMs treated by HC encapsuled NPs could switch to M1-like phenotype, IL-10low, IL-12high, TGF-βlow, and the “re-educated” macrophages (M1-like macrophages) considerably demonstrated opposite effect of M2-like macrophages, especially the induction of 4T1 cells migration and invasion in vitro, and suppression of tumor growth, angiogenesis and metastasis in vivo. These data indicated that inhibition of STAT3 activity of TAMs by HC-NPs was able to reverse their phenotype and could regulate their crosstalk between tumor cells and TAMs in order to suppress tumor progression.
Emerging evidence has shown that cancer stem cells (CSCs) are the cellular determinants to promote cancer invasion and metastasis. However, the mechanism underlying CSC invasion remains unknown. MicroRNAs are evolutionally conserved small noncoding RNAs that are critical for the regulation of gene expression, and their expressions are often dysregulated in cancers. In the present study, we demonstrated that two functionally related microRNAs, miR-20a and -106a (miR-20a/106a), were capable of enhancing the invasiveness of CD133(+) glioma stem cells (GSCs) isolated from both glioblastoma cell line U87 and primary human glioma specimens. We found that the level of miR-20a/106a in GSCs was significantly higher than that in the committed CD133(-) glioma cells, and correlated with the invasive capability of GSCs. By bioinformatic analysis, we identified tissue inhibitor of metalloproteinases-2 (TIMP-2) as one of the miR-20a/106a-targeted genes. TIMP-2 level correlated inversely with miR-20/106 expression. Directly targeting by miR-20a/106a on 3'-untranslation region (3'-UTR) of TIMP-2 mRNA was confirmed by 3'-UTR dual-luciferase reporter assay. Knockdown of miR-20a/106a in GSCs increased endogenous TIMP-2 protein abundance, thereby inhibiting GSC invasion. We also found that Nordy, a synthetic lipoxygenase inhibitor, inhibited GSC invasiveness by elevating the expression of TIMP-2 via downregulation of miR-20a/106a. Our results indicate that miR-20a/106a has a key role in GSC invasion and may serve as targets for treatment of glioblastoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.