Summary
Tomato varieties resistant to the bacterial wilt pathogen Ralstonia solanacearum have the ability to restrict bacterial movement in the plant. Inducible vascular cell wall reinforcements seem to play a key role in confining R. solanacearum into the xylem vasculature of resistant tomato. However, the type of compounds involved in such vascular physico‐chemical barriers remain understudied, while being a key component of resistance.
Here we use a combination of histological and live‐imaging techniques, together with spectroscopy and gene expression analysis to understand the nature of R. solanacearum‐induced formation of vascular coatings in resistant tomato.
We describe that resistant tomato specifically responds to infection by assembling a vascular structural barrier formed by a ligno‐suberin coating and tyramine‐derived hydroxycinnamic acid amides. Further, we show that overexpressing genes of the ligno‐suberin pathway in a commercial susceptible variety of tomato restricts R. solanacearum movement inside the plant and slows disease progression, enhancing resistance to the pathogen.
We propose that the induced barrier in resistant plants does not only restrict the movement of the pathogen, but may also prevent cell wall degradation by the pathogen and confer anti‐microbial properties, effectively contributing to resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.