In this paper, we present a new attempt to lay ballastless tracks on long-span cable-stayed bridges on high-speed railways. The arrangements of ballastless tracks laid on cable-stayed bridges can be divided into two conditions: (i) across the cable suspension-point cross-section or (ii) in discontinuity at the cable suspension-point cross-section. At present, there is a lack of in-depth research on ballastless tracks laid on long-span cable-stayed bridges, especially on the mechanical behaviors and fatigue performances of the ballastless tracks with different arrangements. For this paper, a segmental model of a long-span cable-stayed bridge was designed and built, on which full-scale ballastless tracks with two different arrangements were arranged. A series of fatigue tests and post-fatigue loading tests were carried out based on the two selected full-scale ballastless tracks. Some conclusions were drawn as follows. For the longitudinal end of the ballastless track, which is far from the loading positions, the interlayers of the ballastless tracks tend to warp up relatively, and the compressive pressures at the interlayers are also unloaded. However, there is no void or gap formed at the interlayers of the longitudinal end of the track slab due to the precompression of the rubber isolation layer. For the center of the track slab, which is close to the loading positions, the compressive deformations occur at the interlayers, and the pressures at interlayers are also increased. The maximum compressive deformation is less than 0.5 mm under the standard train axle load (170 kN), and it cannot affect the high-speed trains’ operation. With the increase of the post-fatigue loading, the load-displacement curves and the load-pressure variation curves of the ballastless tracks show apparent nonlinearity. Moreover, with the increase of the fatigue loading cycles, the compressive stiffness enhancement or degradation of the ballastless tracks are not noticeable. That is to say, the ballastless tracks laid on the long-span cable-stayed bridges with different arrangements have good mechanical behaviors, and their fatigue performances can also be guaranteed after bearing repeated loadings.
The deformation behaviors of ballastless tracks have an important influence on their service performance. In this work, rubber mats commonly used in metro traffic were employed in ballastless tracks laid on bridges to improve their deformation behaviors. In order to research the effect of rubber mat for deformation behaviors, a series of static loading tests were carried out based on two full-scale ballastless tracks with different types of isolation layers. Main conclusion include that, for ballastless track with geotextile isolation layers, gaps and voids are formed at interlayers with the increasing static load. However, for ballastless track with rubber mat isolation layer, the maximum tensile deformation in the thickness direction unexceeds the precompression of rubber mat under the deadweight of its upper structures. Interlayer gaps and voids can be eliminated due to the precompression of rubber mat. Besides, the rubber mat isolation layer is still in the linear elasticity stage under the routine service condition, and the interlayer behaviors of the ballastless tracks perform well. It is a feasible way to use a rubber mat isolation layer to improve the deformation behaviors of ballastless tracks laid on bridges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.