Epithelial-mesenchymal transition (EMT) plays an important role in prostate cancer (PCa) metastasis; thus, developing EMT inhibitors may be a feasible treatment for metastatic PCa. Here, we discovered that arenobufagin and four other bufadienolides suppressed PC3 cell EMT. These compounds modulated EMT marker expression with elevating E-cadherin and reducing ZEB1, vimentin and slug expression, and attenuated the migration and invasion of PC3 cells. Among these five compounds, arenobufagin exhibited the most potent activity. We found that the mRNA and protein expression of β-catenin and β-catenin/TCF4 target genes, which are related to tumor invasion and metastasis, were down-regulated after arenobufagin treatment. Overexpression of β-catenin in PC3 cells antagonized the EMT inhibition effect of arenobufagin, while silencing β-catenin with siRNA enhanced the inhibitory effect of arenobufagin on EMT. In addition, arenobufagin restrained xenograft tumor EMT, as demonstrated by decreased mesenchymal marker expression and increased epithelial marker expression, and reduced the tumor metastatic foci in lung. This study demonstrates a novel anticancer activity of arenobufagin, which inhibits PC3 cell EMT by down-regulating β-catenin, thereby reducing PCa metastasis. In addition, it also provides new evidence for the development of arenobufagin as a treatment for metastatic prostate cancer.
Fibroblast activation protein-alpha (FAP) is a transmembrane serine protease involving in tissue remodeling. Previous studies report that FAP is highly expressed in certain tumors and participated in oncogenesis. However, there is still lack of systematic and in-depth analysis of FAP based on clinical big data. Here, we comprehensively map the FAP expression profile, prognostic outcome, genetic alteration, immune infiltration across over 30 types of human cancers through multiple datasets including TCGA, CPTAC, and cBioPortal. We find that FAP is up-regulated in most cancer types, and increased FAP expression is associated with advanced pathological stages or poor prognosis in several cancers. Furthermore, FAP is significantly correlated with the infiltration of cancer-associated fibroblasts, macrophages, myeloid dendritic cells, as well as endothelia cells. Immunosuppressive checkpoint proteins or cytokines expression, microsatellite instability and tumor mutational burden analysis also indicate the regulation role of FAP in tumor progression. Gene enrichment analysis demonstrates that ECM-receptor interaction as well as extracellular matrix and structure process are linked to the potential mechanism of FAP in tumor pathogenesis. The ceRNA network is also constructed and identified the involvement of LINC00707/hsa-miR-30e-5p/FAP, LINC02535/hsa-miR-30e-5p/FAP, LINC02535/hsa-miR-30d-5p/FAP, as well as AC026356.1/hsa-miR-30d-5p/FAP axis in tumor progression. In conclusion, our study offers new insights into the oncogenic and immunological role of FAP from a pan-cancer perspective, providing new clues for developing novel targeted anti-tumor strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.