Recently, flexible pressure sensors (FPSs) have attracted intensive attention owing to their ability to mimic and function as electronic skin. Some sensors are exploited with a biological structure dielectric layer for high sensitivity and detection. However, traditional sensors with bionic structures usually suffer from a limited range for high‐pressure scenes due to their high sensitivity and high hysteresis in the medium pressure range. Here, a reconfigurable flea bionic structure FPS based on 3D printing technology, which can meet the needs of different scenes via tailoring of the dedicated structural parameters, is proposed. FPS exhibits high sensitivity (1.005 kPa−1 in 0–1 kPa), wide detection range (200 kPa), high repeatability (6000 cycles in 10 kPa), low hysteresis (1.3%), fast response time (40 ms), and very low detection limit (0.5 Pa). Aiming at practical application implementation, FPS has been correspondingly placed on a finger, elbow, arm, neck, cheek, and manipulators to detect the actions of various body parts, suggestive of excellent applicability. It is also integrated to make a flexible 3 × 3 sensor array for detecting spatial pressure distribution. The results indicate that FPS exhibits a significant application potential in advanced biological wearable technologies, such as human motion monitoring.
Recently, flexible tactile sensors have been widely concerned in many fields, including healthcare monitoring devices and wearable electronics. However, the fabrication of capacitive bionic tactile sensors with a wide linear sensing range and high sensitivity is a major difficulty. A flexible bionic sensor based on the octopus sucker microstructure that improves sensing performance by constructing a biomimetic body with a good microstructure was proposed in this study. The effect of the characteristic parameters of the sensor structure on the sensitivity is studied by simulations and experiments, and the sensor structure is optimized. Experimental results demonstrate that the proposed octopus-inspired tactile sensor has a high sensitivity of 0.636 kPa −1 and a wide linear sensing range (8 Pa-500 kPa). Moreover, the tactile sensor has a rapid response time (∼40 ms), excellent repeatability, and outstanding durability (>6000 cycles), making it a reliable platform for monitoring human movements and bionic manipulator grasping objects. This study provides bionic tactile sensors with significant potential for innovative applications in future intelligent robotics and electronic skins.
Recently, flexible stretchable sensors have been gaining attention for their excellent adaptability for electronic skin applications. However, the preparation of stretchable strain sensors that achieve dual‐mode sensing while still retaining ultra‐low detection limit of strain, high sensitivity, and low cost is a pressing task. Herein, a high‐performance dual‐mode stretchable strain sensor (DMSSS) based on biomimetic scorpion foot slit microstructures and multi‐walled carbon nanotubes (MWCNTs)/graphene (GR)/silicone rubber (SR)/Fe3O4 nanocomposites is proposed, which can accurately sense strain and magnetic stimuli. The DMSSS exhibits a large strain detection range (≈160%), sensitivity up to 100.56 (130–160%), an ultra‐low detection limit of strain (0.16% strain), and superior durability (9000 cycles of stretch/release). The sensor can accurately recognize sign language movement, as well as realize object proximity information perception and whole process information monitoring. Furthermore, human joint movements and micro‐expressions can be monitored in real‐time. Therefore, the DMSSS of this work opens up promising prospects for applications in sign language pose recognition, non‐contact sensing, human‐computer interaction, and electronic skin.
Stretchable strain sensors with high stability, high responsiveness, and low detection limit provide the broad potential for intelligent robots and electronic skin. However, developing low‐cost strain sensors with contact and non‐contact sensing modes remains a significant challenge. In this study, a flexible magnetic strain sensor based on a sandwich structure is proposed to address this challenge. The proposed structure utilizes the coordination between carbon black and Fe3O4 microparticles in the silicone rubber matrix to enhance the sensor's sensitivity to external strain and magnetic stimuli. The sensor exhibits excellent tensile properties with a strain range of up to 180%, fast response/recovery time (78 ms/65 ms), high stability, and durability after 9000 cycles. Moreover, the flexible magnetic strain sensors can detect micro‐vibration and micro‐strain signals. It can also be performed as electronic skin to precisely sense human movements. Furthermore, the newly developed sensor can accurately sense oncoming objects and bicycle riding speed/distance, and a flexible magnetic keyboard is conceived. Consequently, the dual‐modal magnetic strain sensor exhibits an excellent ability to identify contact and non‐contact states and has broad application prospects in next‐generation intelligent products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.