Based on the theories of acoustic agglomeration and dust wet removal, an experimental apparatus was constructed to study the combined effects of acoustic agglomeration and atomization humidification in the pretreatment process to analyze the filtration performance of filter material. According to the concentration of coal-fired fly ash chosen in the experiments, the proper amount of atomization humidification and the proper sound pressure level (SPL) were determined. Under the relative humidity (RH) of 69% and with SPL in the range of 100 dB to 135 dB, the removal efficiency of fly-ash, the compressibility of the fly-ash particle layer on the filter media, and the performance of pulse filter cleaning were studied. The results indicate that the combined effects of sound fields and atomization humidification can effectively remove PM 10 and PM 2.5 , and change the interaction and movement of particles, which can improve the pore structure of the fly-ash particle layer and increase the porosity of the dust layer. The results also indicate that with the proper amount of atomization humidification and appropriate SPL, the joint acoustic-atomization pretreatment can delay the filter material blocking, which reduces the pulse filter cleaning frequency and extends the filter cleaning cycle. It can also reduce the residual resistance after filter cleaning and prolong the operating lifetime of the filter media.
EDITORJing Wang
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.