A novel AlGaInAs/InP electro-absorption modulated laser (EML) with a simple fabrication process is proposed, in which the electro-absorption modulator (EAM) has a 10 nm blueshift induced by quantum well intermixing (QWI) and is monolithically integrated with a sidewall grating distributed-feedback (DFB) laser working at 1.55 μm wavelength. The extent of the QWI process is characterized by a diffusion length. The quantum confined Stark effect (QCSE) is simulated in terms of extinction ratio (ER) and chirp for bias electric fields from 0 kV/cm to 200 kV/cm and for different amounts of intermixing. The results indicate that for a 150 µm-long EAM with a 10 nm blueshift induced by QWI, an ER of 40 dB is obtained at 2.5 V reverse bias with no penalty in chirp compared to an as-grown quantum well (QW) and the insertion loss at 0 V bias is 0.11 dB for 1.55 µm operation wavelength. The simulated –3 dB bandwidth of the electrical to optical power response is 22 GHz.
A four-laser array based on sampled Bragg grating distributed feedback (DFB) lasers in which each sampled period contains four phase-shift sections is proposed, fabricated, and experimentally demonstrated. The wavelength spacing between adjacent lasers is accurately controlled to 0.8 nm ± 0.026 nm and the lasers have single mode suppression ratios larger than 50 dB. Using an integrated semiconductor optical amplifier, the output power can reach 33 mW and the optical linewidth of the DFB lasers can be as narrow as 64 kHz. This laser array uses a ridge waveguide with sidewall gratings and needs only one metalorganic vapor-phase epitaxy (MOVPE) step and one III-V material etching process, simplifying the whole device fabrication process, and meeting the requirements of dense wavelength division multiplexing systems.
An AlGaInAs multiple-quantum-well (MQW) polarization mode controller (PMC) using a stepped height ridge waveguide is presented, which is monolithically integrated with a sidewall grating distributed feedback laser using quantum well intermixing (QWI). QWI is used to create a 100 nm blueshift in the PMC and to partially eliminate the anisotropy and birefringence of the MQW structure. The PMC structure is modelled and optimized using a 3D full-vectorial Finite-Element Method package. The maximum polarization conversion efficiency (PCE) is around 96% for a 537-µm-long PMC operating at a wavelength of 1550 nm. To maintain a PCE of ≥90%, the fabrication tolerances of the dry-etch corner and ridge waveguide widths are ± 0.05 µm and ± 0.03 µm respectively. The main advantages of the proposed design are that only a single step of MOPVE and two steps of dry etching are required for the whole integrated device, significantly reducing complexity and cost.
Spatial visualization of mode distribution of light scattering from plasmonic nanostructures is of vital importance for understanding the scattering mechanism and applications based on these plasmonic nanostructures. A long unanswered question in how the spatial information of scattered light from a single plasmonic nanostructure can be recovered in the far-field, under the constraints of the diffraction limit of the detection or imaging optical system. In this paper, we reported a theoretical model on retrieving local spatial information of scattered light by plasmonic nanostructures in a far-field optical imaging system. In the far-field parametric sin δ images, singularity points corresponding to near-field hot spots of the edge mode and the gap mode were resolved for gold ring and split rings with subwavelength diameters and feature sizes. The experimental results were verified with Finite Difference Time Domain (FDTD) simulation in the near-field and far-field, for the edge mode and the gap mode at 566 nm and 534 nm, respectively. In sin δ image of split-ring, two singularity points associated with near-field hot spots were visualized and resolved with the characteristic size of 90 and 100 nm, which is far below the diffraction limit. The reported results indicate the feasibility of characterizing the spatial distribution of scattering light in the far-field and with sub-wavelength resolution for single plasmonic nanostructures with sub-wavelength feature sizes.
We simulate and demonstrate experimentally an inner-wall grating double slot micro ring resonator (IG-DSMRR) with a center slot ring radius of only 6.72 µm based on the silicon-on-insulator platform. This novel photonic-integrated sensor for optical label-free biochemical analysis boosts the measured refractive index (RI) sensitivity in glucose solutions to 563 nm/RIU with the limit of detection value being 3.7 × 10−6 RIU (refractive index units). The concentration sensitivity for sodium chloride solutions can reach 981 pm/%, with a minimum concentration detection limit of 0.02%. Using the combination of DSMRR and IG, the detection range is enlarged significantly to 72.62 nm, three times the free spectral range of conventional slot micro ring resonators. The measured Q-factor is 1.6 × 104, and the straight strip and double slot waveguide transmission losses are 0.9 dB/cm and 20.2 dB/cm, respectively. This IG-DSMRR combines the advantages of a micro ring resonator, slot waveguide, and angular grating and is highly desirable for biochemical sensing in liquids and gases offering an ultra-high sensitivity and ultra-large measurement range. This is the first report of a fabricated and measured double-slot micro ring resonator with an inner sidewall grating structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.