Optical properties of nodal-line semimetal ZrSiS are studied using first-principles calculations. Frequency-independent optical conductivity is a fingerprint of the infrared optical response in ZrSiS. We find that this characteristic feature is robust with respect to external pressure of up to 10 GPa, yet with the flat region being narrowed with increasing pressure. Upon tensile stress of 2 GPa, the Fermi surface undergoes a topological transition accompanied by a weakening of the interband screening, which reduces the spectral weight of infrared excitations. We also show that the highenergy region is characterized by low-loss plasma excitations at ∼20 eV with essentially anisotropic dispersion. Strongly anisotropic dielectric properties suggest the existence of a hyperbolic regime for plasmons in the deep ultraviolet range. Although the frequencies of high-energy plasmons are virtually unaffected by external pressure, their dispersion can be effectively tuned by strain.
Atomically thin indium selenide (InSe) is a representative two-dimensional (2D) family that have recently attracted extensive interest for their intriguing emerging physics and potential optoelectronic applications with high-performance. Here, by utilizing molecular beam epitaxy and scanning tunneling microscopy, we report a controlled synthesis of InSe thin films down to the monolayer limit and characterization of their electronic properties at atomic scale. Highly versatile growth conditions are developed to fabricate well crystalline InSe films, with a reversible and controllable phase transformation between InSe and In 2 Se 3 . The band gap size of InSe films, as enhanced by quantum confinement, increases with decreasing film thickness. Near various categories of lattice imperfections, the band gap becomes significantly enlarged, resulting in a type-I band alignments for lateral heterojunctions. Such band gap enhancement, as unveiled from our first-principles calculations, is ascribed to the local compressive strain imposed by the lattice imperfections. Moreover, InSe films host highly conductive 2D electron gas, manifesting prominent quasiparticle scattering signatures. The 2D electron gas is self-formed via substrate doping of electrons, which shift the Fermi level above the confinement-quantized conduction band. Our study identifies InSe ultrathin film as an appealing system for both fundamental research and potential applications in nanoelectrics and optoelectronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.