Symmetrical dual D-shape photonic crystal fibers (PCFs) for surface plasmon resonance (SPR) sensing are designed and analyzed by the finite element method (FEM). The performance of the sensor is remarkably enhanced by the directional power coupling between the two fibers. We study the influence of the structural parameters on the performance of the sensor as well as the relationship between the resonance wavelengths and analyze refractive indexes between 1.36 and 1.41. An average spectral sensitivity of 14660 nm/RIU can be achieved in this sensing range and the corresponding refractive index resolution is 6.82 × 10 RIU. The characteristics of a single D-shape PCF-SPR sensor with the same structural parameters are compared with those of the dual PCFs sensor and the latter has distinct advantages concerning the spectral sensitivity, resolution, amplitude sensitivity, and figure of merits (FOM).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.