Mesenchymal stem cells (MSCs) show protective effects on ischemia/reperfusion- (I/R-) induced endothelial cell (EC) injury and vascular damage. Stem cell-released exosomes (EXs) could modulate target cell functions by delivering their cargos, and exert therapeutic effects as their mother cells. miR-126 is an important regulator of EC functions and angiogenesis. In this study, we determined whether EXs released from MSC-EXs provided beneficial effects on hypoxia/reoxygenation- (H/R-) injured ECs by transferring miR-126. MSCs were transfected with a miR-126 mimic or miR-126 short hairpin RNA to obtain miR-126-overexpressing MSC-EXs (MSC-EXsmiR-126) and miR-126 knockdown MSC-EXs (MSC-EXsSimiR-126). For functional studies, H/R-injured ECs were coincubated with various MSC-EXs. The viability, migration, tube formation ability, and apoptosis of ECs were measured. miR-126 and proangiogenic/growth factor (VEGF, EGF, PDGF, and bFGF) expressions were detected by qRT-PCR. Akt, p-Akt, p-eNOS, and cleaved caspase-3 expressions were examined by western blot. The PI3K inhibitor (LY294002) was used in pathway analysis. We found that overexpression/knockdown of miR-126 increased/decreased the proliferation of MSCs, as well as miR-126 expression in their derived MSC-EXs. MSC-EXsmiR-126 were more effective in promoting proliferation, migration, and tube formation ability of H/R-injured ECs than MSC-EXs. These effects were associated with the increase in p-Akt/Akt and p-eNOS, which could be abolished by LY294002. Besides, MSC-EXsmiR-126 were more effective than MSC-EXs in reducing the apoptosis of ECs, coupled with the decrease in cleaved caspase-3. Moreover, compared to MSC-EXs, MSC-EXsmiR-126 significantly upregulated the level of VEGF, EGF, PDGF, and bFGF in H/R-injured ECs. Downregulation of miR-126 in MSC-EXs inhibited these effects of MSC-EXs. The results suggest that MSC-EXs could enhance the survival and angiogenic function of H/R-injured ECs via delivering miR-126 to ECs and subsequently activate the PI3K/Akt/eNOS pathway, decrease cleaved caspase-3 expression, and increase angiogenic and growth factors.
Purpose Particulate matter (PM) has been implicated as a risk factor for airway injury. However, the molecular mechanisms remain largely unclear. The goal of this study was to determine whether sirtuin1 (SIRT1), an anti-inflammatory and antiaging protein, protects against PM-induced airway inflammation. Methods The effect of SIRT1 on PM-induced airway inflammation was assessed by using in vivo models of airway inflammation induced by PM and in vitro culture of human bronchial epithelial (HBE) cells exposed to PM, resveratrol (SIRT1 activator), or both. Results PM-stimulated HBE cells showed a significant decrease in SIRT1 but a notable increase in inflammatory cytokines. SIRT1 gene silencing further enhanced PM-induced expression of inflammatory cytokines. In contrast, resveratrol, a SIRT1 activator, reduced the expression of these cytokines compared with the control cells. In vivo, SIRT1 expression was significantly decreased in lung tissues of PM-exposed mice. Interestingly, resveratrol treatment reversed the enhanced total cells, neutrophils and inflammatory cytokines in PM-induced mice. Moreover, SIRT1 mediated PM-induced inflammatory cytokines expression at least partly through MAPK pathways. Conclusion These findings suggest that SIRT1 is involved in the pathogenesis of PM-induced airway inflammation and activation of SIRT1 could prevent airway disorders or disease exacerbations induced by airborne particulate pollution.
Cytokines play important roles in tumorigenesis and progression of cancer cells, while their functions in drug resistance remain to be illustrated. We successfully generated doxorubicin (Dox)-resistant CRC HCT-116 and SW480 cells (namely HCT-116/Dox and SW480/Dox, respectively). Cytokine expression analysis revealed that IL-8, while not FGF-2, EGF, TGF-β, IL-6, or IL-10, was significantly increased in Dox-resistant CRC cells as compared with their corresponding parental cells. Targeted inhibition of IL-8 via siRNAs or its inhibitor reparixin can increase the Dox sensitivity of HCT-116/Dox and SW480/Dox cells. The si-IL-8 can decrease the mRNA and protein expression of multidrug resistance 1 (MDR1, encoded by ABCB1), while has no effect on the expression of multidrug resistance-associated protein 1 (ABCC1), in CRC Dox-resistant cells. IL-8 can increase the phosphorylation of p65 and then upregulate the binding between p65 and promoter of ABCB1. BAY 11-7082, the inhibitor of NF-κB, suppressed the recombination IL-8 (rIL-8) induced upregulation of ABCB1. It confirmed that NF-κB is involved in IL-8-induced upregulation of ABCB1. rIL-8 also increased the phosphorylation of IKK-β, which can further activate NF-κB, while specific inhibitor of IKK-β (ACHP) can reverse rIL-8-induced phosphorylation of p65 and upregulation of MDR1. These results suggested that IL-8 regulates the Dox resistance of CRC cells via modulation of MDR1 through IKK-β/p65 signals. The targeted inhibition of IL-8 might be an important potential approach to overcome the clinical Dox resistance in CRC patients.
Objectives Chemotheraputic drug resistance is a critical factor associated with the poor survival in advanced/metastatic pancreatic cancer (PC) patients. Methods Human pancreatic cell lines Capan‐1 and BXPC‐3 were cultured with different concentrations of erlotinib (0, 10, 50, and 100 μm) for 48 h. The relative cell viability and apoptosis was detected using MTT assays and flow cytometry apoptosis analysis, respectively. Transfection of pcDNA‐EphA2, si‐EphA2 and miR‐124 mimic/inhibitor was used to modulate the intracellular level of EphA2 and miR‐124. The interaction between miR‐124 and the 3′UTR of EphA2 was explored using dual luciferase reporter assay. Key findings Compared with BXPC‐3 cells, Capan‐1 cells showed resistance to differential concentration treatment of erlotinib. The expression of EphA‐2 was significantly increased and the expression of miR‐124 was significantly decreased in Capan‐1 cells. Overexpressing EphA2 induced resistance of BXPC‐3 cells to erlotinib treatment. And EphA2 was identified as a novel target gene for miR‐124. MiR‐124 overexpression was able to sensitize the response of Capan‐1 cells to erlotinib through inhibiting EphA2. Furthermore, both miR‐124 overexpression and EphA2 inhibition sensitized Capan‐1 cells to erlotinib in xenograft model. Conclusions Our study demonstrated that EphA2 rescued by miR‐124 downregulation conferred the erlotinib resistance of PC cell Capan‐1 with K‐RAS mutation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.