By means of in vivo selection, transcriptomic analysis, functional verification and clinical validation, here we identify a set of genes that marks and mediates breast cancer metastasis to the lungs. Some of these genes serve dual functions, providing growth advantages both in the primary tumour and in the lung microenvironment. Others contribute to aggressive growth selectively in the lung. Many encode extracellular proteins and are of previously unknown relevance to cancer metastasis.Metastasis is frequently a final and fatal step in the progression of solid malignancies. Tumour cell intravasation, survival in circulation, extravasation into a distant organ, angiogenesis and uninhibited growth constitute the metastatic process 1 . The molecular requirements for some of these steps may be tissue specific. Indeed, the proclivity that tumours have for specific organs, such as breast carcinomas for bone and lung, was noted more than a century ago 2 .The identity and time of onset of the changes that endow tumour cells with these metastatic functions are largely unknown and are a subject of debate. It is believed that genomic instability generates large-scale cellular heterogeneity within tumour populations, from which rare cellular variants with augmented metastatic abilities evolve through a darwinian selection process 2,3 . Work on experimental metastasis with tumour cell lines has demonstrated that reinjection of metastatic cell populations can lead to enrichment in the metastatic phenotype 4-6 . Recently, however, the existence of genes expressed by rare cellular variants that specifically mediate metastasis has been challenged 7 . Transcriptomic profiling of primary human carcinomas has identified gene expression patterns that, when present in the bulk primary tumour population, predict a poor prognosis for patients 8-10 . The existence of such signatures has been interpreted to mean that genetic lesions acquired early in tumor-igenesis are sufficient for the metastatic process, and that consequently no metastasis-specific genes exist. However, it is unclear whether these genes predicting metastatic recurrence are also functional mediators.The lungs and bones are frequent sites of breast cancer metastasis, and metastases to these sites differ in terms of their evolution, treatment, morbidity and mortality 11 . Reasoning that each organ places different demands on circulating cancer cells for the establishment of metastases, Selection of cells metastatic to the lungsThe cell line MDA-MB-231 was derived from the pleural effusion of a breast cancer patient suffering from widespread metastasis years after removal of her primary tumour 12 . Individual MDA-MB-231 cells grown and tested as single-cell-derived progenies (SCPs) have distinct metastatic abilities and tissue tropisms 13 despite having similar expression levels of genes constituting a validated Rosetta-type poor prognosis signature 9 ( Supplementary Fig. S1). These different meta-static behaviours, including different tropisms to bone and lung, ...
We investigated the molecular basis for osteolytic bone metastasis by selecting human breast cancer cell line subpopulations with elevated metastatic activity and functionally validating genes that are overexpressed in these cells. These genes act cooperatively to cause osteolytic metastasis, and most of them encode secreted and cell surface proteins. Two of these genes, interleukin-11 and CTGF, encode osteolytic and angiogenic factors whose expression is further increased by the prometastatic cytokine TGF beta. Overexpression of this bone metastasis gene set is superimposed on a poor-prognosis gene expression signature already present in the parental breast cancer population, suggesting that metastasis requires a set of functions beyond those underlying the emergence of the primary tumor.
The molecular basis for breast cancer metastasis to the brain is largely unknown 1,2 . Brain relapse typically occurs years after the removal of a breast tumour [2][3][4] , suggesting that disseminated cancer cells must acquire specialized functions to overtake this organ. Here we show that breast cancer metastasis to the brain involves mediators of extravasation through non-fenestrated capillaries, complemented by specific enhancers of blood-brain barrier crossing and brain colonization. We isolated cells that preferentially infiltrate the brain from patients with advanced disease. Gene expression analysis of these cells and of clinical samples, coupled with functional analysis, identified the cyclooxygenase COX2 (also known as PTGS2), the epidermal growth factor receptor (EGFR) ligand HBEGF, and the α2,6-sialyltransferase ST6GALNAC5 as mediators of cancer cell passage through the blood-brain barrier. EGFR ligands and COX2 were previously linked to breast cancer infiltration of the lungs, but not the bones or liver 5,6 , suggesting a sharing of these mediators in cerebral and pulmonary metastases. In contrast, ST6GALNAC5 specifically mediates brain metastasis. Normally restricted to the brain 7 , the expression of ST6GALNAC5 in breast cancer cells enhances their adhesion to brain endothelial cells and their passage through the blood-brain barrier. This co-option of a brain sialyltransferase highlights the role of cell-surface glycosylation in organspecific metastatic interactions.Brain metastasis affects an estimated 10% of cancer patients with disseminated disease 2,8,9 . Even small lesions can cause neurological disability, and the median survival time of patientsCorrespondence and requests for materials should be addressed to J.M. (E-mail: j-massague@ski.mskcc.org). † Present addresses: Institut de Malalties Hemato-Oncològiques, Hospital Clínic, 08036 Barcelona, Spain (C.N.); Oncology Programme, Institute for Research in Biomedicine, 08028 Barcelona, Spain (R.R.G.). Author InformationThe clinical microarray data on the brain metastatic cell lines have been deposited in NCBI's Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo) under the GEO series accession number GSE12237.Supplementary Information is linked to the online version of the paper at www.nature.com/nature. Full Methods and any associated references are available in the online version of the paper at www.nature.com/nature. 11 and also by tight junctions and astrocyte foot processes in the blood-brain barrier (BBB) 2,8 , whereas the capillaries in the bone marrow and the liver are fenestrated 11,12 . The composition of the parenchyma also varies extensively between these organs. The protracted progression of disseminated cancer cells in different environments may give rise to metastatic speciation, as suggested by the coexistence of malignant cells with different organ tropisms in fluids from patients with advanced disease 5,13 . Analysis of such malignant cell populations has revealed genes that selectively mediate breast cance...
Drug resistance invariably limits the clinical efficacy of targeted therapy with kinase inhibitors against cancer1,2. Here we show that targeted therapy with BRAF, ALK, or EGFR kinase inhibitors induces a complex network of secreted signals in drug-stressed melanoma and lung adenocarcinoma cells. This therapy-induced secretome (TIS) stimulates the outgrowth, dissemination, and metastasis of drug-resistant cancer cell clones and supports the survival of drug-sensitive cancer cells, contributing to incomplete tumour regression. The vemurafenib reactive secretome in melanoma is driven by down-regulation of the transcription factor FRA1. In situ transcriptome analysis of drug-resistant melanoma cells responding to the regressing tumour microenvironment revealed hyperactivation of multiple signalling pathways, most prominently the AKT pathway. Dual inhibition of RAF and PI3K/AKT/mTOR pathways blunted the outgrowth of the drug-resistant cell population in BRAF mutant melanoma tumours, suggesting this combination therapy as a strategy against tumour relapse. Thus, therapeutic inhibition of oncogenic drivers induces vast secretome changes in drug-sensitive cancer cells, paradoxically establishing a tumour microenvironment that supports the expansion of drug-resistant clones, but is susceptible to combination therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.