Background. High power shorter duration (HPSD) ablation may lead to safe and rapid lesion formation. However, the optimal radio frequency power to achieve the desired ablation index (AI) or lesion size index (LSI) is insubstantial. This analysis aimed to appraise the clinical safety and efficacy of HPSD guided by AI or LSI (HPSD-AI or LSI) in patients with atrial fibrillation (AF). Methods. The Medline, PubMed, Embase, Web of Science, and the Cochrane Library databases from inception to November 2020 were searched for studies comparing HPSD-AI or LSI and low power longer duration (LPLD) ablation. Results. Seven trials with 1013 patients were included in the analysis. The analyses verified that HPSD-AI or LSI revealed benefits of first-pass pulmonary vein isolation (PVI) (RR: 1.28; 95% CI: 1.05–1.56, P = 0.01) and acute pulmonary vein reconnection (PVR) (RR: 0.65; 95% CI: 0.48–0.88, P = 0.005) compared with LPLD. HPSD-AI or LSI showed higher freedom from atrial tachyarrhythmia (AT) (RR = 1.32, 95% CI: 1.14–1.53, P = 0.0002) in the subgroup analysis of studies with PVI ± (with or without additional ablation beyond PVI). HPSD-AI or LSI could short procedural time (WMD: −22.81; 95% CI, −35.03 to −10.60, P = 0.0003), ablation time (WMD: −10.80; 95% CI: −13.14 to −8.46, P < .00001), and fluoroscopy time (WMD: −7.71; 95% CI: −13.71 to −1.71, P = 0.01). Major complications and esophageal lesion in HPSD-AI or LSI group were no more than LDLP group (RR: 0.58; 95% CI: 0.20–1.69, P = 0.32) and (RR: 0.84; 95% CI: 0.43–1.61, P = 0.59). Conclusions. HPSD-AI or LSI was efficient for treating AF with shorting procedural, ablation, and fluoroscopy time, higher first-pass PVI, and reducing acute PVR and may increase freedom from AT for patients with additional ablation beyond PVI compared with LPLD. Moreover, complications and esophageal lesion were low and no different between two groups.
Bacterial biofilms are highly structured, surface associated bacteria colonies held together by a cell-generated polymer network known as EPS (extracellular polymeric substance). This polymer network assists in adhesion to surfaces and generates spreading forces as colonies grow over time. In the laboratory and in nature, biofilms often grow at the interface between air and an elastic, semi-permeable nutrient source. As this type of biofilm increases in volume, an accommodating compression of its substrate may arise, potentially driven by the osmotic pressure exerted by the EPS against the substrate surface. Here we study Bacillus subtilis biofilm force generation by measuring the magnitude and rate of deformation imposed by colonies against the agar-nutrient slabs on which they grow. We find that the elastic stress stored in deformed agar is orders of magnitude larger than the drag stress associated with pulling fluid through the agar matrix. The stress exerted by the biofilm is nearly the same as the osmotic pressure generated by the EPS, and mutant colonies incapable of producing EPS exert much lower levels of stress. The fluid flow rate into B. subtilis biofilms suggest that EPS generated pressure provides some metabolic benefit as colonies expand in volume. These results reveal that long-term biofouling and colony expansion may be tied to the hydraulic permeability and elasticity of the surfaces that biofilms colonize.
Convection enhanced delivery (CED) is a promising novel technology to treat neural diseases, as it can transport macromolecular therapeutic agents greater distances through tissue by direct infusion. To minimize off-target delivery, our group has developed 3D computational transport models to predict infusion flow fields and tracer distributions based on magnetic resonance (MR) diffusion tensor imaging data sets. To improve the accuracy of our voxelized models, generalized anisotropy (GA), a scalar measure of a higher order diffusion tensor obtained from high angular resolution diffusion imaging (HARDI) was used to improve tissue segmentation within complex tissue regions of the hippocampus by capturing small feature fissures. Simulations were conducted to reveal the effect of these fissures and cerebrospinal fluid (CSF) boundaries on CED tracer diversion and mistargeting. Sensitivity analysis was also conducted to determine the effect of dorsal and ventral hippocampal infusion sites and tissue transport properties on drug delivery. Predicted CED tissue concentrations from this model are then compared with experimentally measured MR concentration profiles. This allowed for more quantitative comparison between model predictions and MR measurement. Simulations were able to capture infusate diversion into fissures and other CSF spaces which is a major source of CED mistargeting. Such knowledge is important for proper surgical planning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.