The RNA-binding/dimerization domain of the NS1 protein of influenza A virus (73 amino acids in length) exhibits a novel dimeric six-helical fold. It is not known how this domain binds to its specific RNA targets, one of which is double-stranded RNA. To elucidate the mode of RNA binding, we introduced single alanine replacements into the NS1 RNA-binding domain at specific positions in the three-dimensional structure. Our results indicate that the dimer structure is essential for RNA binding, because any alanine replacement that causes disruption of the dimer also leads to the loss of RNA-binding activity. Surprisingly, the arginine side chain at position 38, which is in the second helix of each monomer, is the only amino-acid side chain that is absolutely required only for RNA binding and not for dimerization, indicating that this side chain probably interacts directly with the RNA target. This interaction is primarily electrostatic, because replacement of this arginine with lysine had no effect on RNA binding. A second basic amino acid, the lysine at position 41, which is also in helix 2, makes a strong contribution to the affinity of binding. We conclude that helix 2 and helix 29, which are antiparallel and next to each other in the dimer conformation, constitute the interaction face between the NS1 RNA-binding domain and its RNA targets, and that the arginine side chain at position 38 and possibly the lysine side chain at position 41 in each of these antiparallel helices contact the phosphate backbone of the RNA target.
ABSTRACT:The neonatal Fc receptor (FcRn) is a key determinant of IgG homeostasis. It binds to the Fc domain of IgG in a strictly pH-dependent manner and protects IgG from lysosomal degradation. The impact of FcRn salvage pathway on IgG monoclonal antibody (mAb) pharmacokinetics (PK) has been well established. In this report, a set of mAbs with wild-type human Fc sequences but different Fab domains were used to examine the potential impact of Fab domain on in vitro FcRn binding and in vivo PK. We were surprised to find that mAbs with the same wild-type human Fc sequences but different Fab domains were shown to bind FcRn with considerable differences in both the binding at acidic pH and the dissociation at neutral pH, suggesting that the Fab domain may also have an impact on FcRn interaction. For these mAbs, no relationship between the FcRn binding affinity at acidic pH and in vivo PK was found. Instead, an apparent correlation between the in vitro FcRn dissociation at neutral pH and the in vivo PK in human FcRn mice, nonhuman primates and humans was observed. Our results suggested that the Fab domain of mAbs can affect their interaction with FcRn and thus their pharmacokinetic properties and that in vitro FcRn binding/dissociation assays can be a useful screening tool for pharmacokinetic assessment of mAbs with wildtype Fc sequences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.