This paper provides algorithms that use an information-theoretic analysis to learn Bayesian network structures from data. Based on our three-phase learning framework, we develop efficient algorithms that can effectively learn Bayesian networks, requiring only polynomial numbers of conditional independence (CI) tests in typical cases. We provide precise conditions that specify when these algorithms are guaranteed to be correct as well as empirical evidence (from real world applications and simulation tests) that demonstrates that these systems work efficiently and reliably in practice.
The study of alternative combination rules in DS theory when evidence is in conflict has emerged again recently as an interesting topic, especially in data/information fusion applications. These studies have mainly focused on investigating which alternative would be appropriate for which conflicting situation, under the assumption that a conflict is identified. The issue of detection (or identification) of conflict among evidence has been ignored. In this paper, we formally define when two basic belief assignments are in conflict. This definition deploys quantitative measures of both the mass of the combined belief assigned to the emptyset before normalization and the distance between betting commitments of beliefs. We argue that only when both measures are high, it is safe to say the evidence is in conflict. This definition can be served as a prerequisite for selecting appropriate combination rules.
The increasing popularity of the social networking service, Twitter, has made it more involved in day-to-day communications, strengthening social relationships and information dissemination. Conversations on Twitter are now being explored as indicators within early warning systems to alert of imminent natural disasters such earthquakes and aid prompt emergency responses to crime. Producers are privileged to have limitless access to market perception from consumer comments on social media and microblogs. Targeted advertising can be made more effective based on user profile information such as demography, interests and location. While these applications have proven beneficial, the ability to effectively infer the location of Twitter users has even more immense value. However, accurately identifying where a message originated from or author's location remains a challenge thus essentially driving research in that regard. In this paper, we survey a range of techniques applied to infer the location of Twitter users from inception to state-of-the-art. We find significant improvements over time in the granularity levels and better accuracy with results driven by refinements to algorithms and inclusion of more spatial features.
Background: Results from clinical trials are usually summarized in the form of sampling distributions. When full information (mean, SEM) about these distributions is given, performing meta-analysis is straightforward. However, when some of the sampling distributions only have mean values, a challenging issue is to decide how to use such distributions in meta-analysis. Currently, the most common approaches are either ignoring such trials or for each trial with a missing SEM, finding a similar trial and taking its SEM value as the missing SEM. Both approaches have drawbacks. As an alternative, this paper develops and tests two new methods, the first being the prognostic method and the second being the interval method, to estimate any missing SEMs from a set of sampling distributions with full information. A merging method is also proposed to handle clinical trials with partial information to simulate meta-analysis.
Abstract. Ontology evolution is an important problem in the Semantic Web research. Recently, Alchourrón, Gärdenfors and Markinson's (AGM) theory on belief change has been applied to deal with this problem. However, most of current work only focuses on the feasibility of the application of AGM postulates on contraction to description logics (DLs), a family of ontology languages. So the explicit construction of a revision operator is ignored. In this paper, we first generalize the AGM postulates on revision to DLs. We then define two revision operators in DLs. One is the weakening-based revision operator which is defined by weakening of statements in a DL knowledge base and the other is its refinement. We show that both operators capture some notions of minimal change and satisfy the generalized AGM postulates for revision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.