Particle-assembled SrNbO2N photoanodes were obtained using flux-assisted nitridation reaction. The optimal experimental parameters were studied for SrNbO2N particles with minimum surface defects and high crystallinity.
Graphitic carbon nitride (g-C3N4) has been regarded as an intriguing photocatalyst applying to hydrogen generation but suffering rapid recombination of photoinduced electron-hole pairs and insufficient absorption under visible light. We developed a novel one-pot thermal copolymerization method of melamine as a precursor and 7,7,8,8-tetracyanoquinodimethane (TCNQ) as a comonomer to synthesize modified g-C3N4 (abbreviated as X% TCNQ) for the first time, aiming to directly incorporate TCNQ molecular into carbon nitride skeleton for the substitution of low-electronegative carbon for high-electronegative nitride atom. Results revealed that the as-prepared photocatalysts by copolymerization of melamine with TCNQ retained the original framework of g-C3N4, and dramatically altered the electronic and optical properties of carbon nitride. Various measurements confirmed that as-synthesized samples exhibited larger specific surface areas, faster photogenerated charge transfer and broader optical absorption by decreasing the π-deficiency and extending the π-conjugated system, thus facilitating the photocatalytic activity. Specifically, the 0.3% TCNQ exhibited as high as seven times than the pristine g-C3N4 on photocatalytic H2 generation and kept its photoactivity for five circles. This work highlights a feasible approach of chemical protocols for the molecular design to synthesize functional carbon nitride photocatalysts by copolymerizing appropriate g-C3N4 precursor and comonomers.
The 5% TCNQ-C3N4 exhibits optimal photoactivity with good stability, which is ascribed to synergistic effects via intermolecular interaction between TCNQ and g-C3N4, with improved optical absorption and promoted separation of photoinduced carriers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.