Abstract-Application-layer multicast supports group applications without the need for a network-layer multicast protocol. Here, applications arrange themselves in a logical overlay network and transfer data within the overlay. In this paper, we present an application-layer multicast solution that uses a Delaunay triangulation as an overlay network topology. An advantage of using a Delaunay triangulation is that it allows each application to locally derive next-hop routing information without requiring a routing protocol in the overlay. A disadvantage of using a Delaunay triangulation is that the mapping of the overlay to the network topology at the network and data link layer may be suboptimal. We present a protocol, called Delaunay triangulation (DT protocol), which constructs Delaunay triangulation overlay networks. We present measurement experiments of the DT protocol for overlay networks with up to 10 000 members, that are running on a local PC cluster with 100 Linux PCs. The results show that the protocol stabilizes quickly, e.g., an overlay network with 10 000 nodes can be built in just over 30 s. The traffic measurements indicate that the average overhead of a node is only a few kilobits per second if the overlay network is in a steady state. Results of throughput experiments of multicast transmissions (using TCP unicast connections between neighbors in the overlay network) show an achievable throughput of approximately 15 Mb/s in an overlay with 100 nodes and 2 Mb/s in an overlay with 1000 nodes.
Wireless sensor networks (WSNs) have been the popular targets for cyberattacks these days. One type of network topology for WSNs, the scale-free topology, can effectively withstand random attacks in which the nodes in the topology are randomly selected as targets. However, it is fragile to malicious attacks in which the nodes with high node degrees are selected as targets. Thus, how to improve the robustness of the scale-free topology against malicious attacks becomes a critical issue. To tackle this problem, this paper proposes a Robustness Optimization scheme with multi-population Co-evolution for scale-free wireless sensor networKS (ROCKS) to improve the robustness of the scale-free topology. We build initial scale-free topologies according to the characteristics of WSNs in the real-world environment. Then, we apply our ROCKS with novel crossover operator and mutation operator to optimize the robustness of the scale-free topologies constructed for WSNs. For a scale-free WSNs topology, our proposed algorithm keeps the initial degree of each node unchanged such that the optimized topology remains scale-free. Based on a well-known metric for the robustness against malicious attacks, our experiment results show that ROCKS roughly doubles the robustness of initial scale-free WSNs, and outperforms two existing algorithms by about 16% when the network size is large.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.