A tube-in-tube carbon nanostructure (TTCN) with multi-walled carbon nanotubes (MWNTs) confined within hollow porous carbon nanotubes is synthesized for Li-S batteries. The structure is designed to enhance the electrical conductivity, hamper the dissolution of lithium polysulfide, and provide large pore volume for sulfur impregnation. As a cathode material for Li-S batteries, the S-TTCN composite with 71 wt% sulfur content delivers high reversible capacity, good cycling performance as well as excellent rate capabilities.
As the rapid expansion of next-generation electronics, portable and efficient energy sources has become one of the most important factors impeding the market development. Triboelectric nanogenerators (TENGs) are a potential candidate for its unsurpassed features. Herein, we deeply analyzed the power and conversion efficiency of contact-mode TENGs considering the whole energy conversion process. Firstly, reaching beyond the conventional analysis, a compressive force was introduced to derive a more versatile motion profile, which provided a better understanding of the working principle of contact-separation process. Then, we deeply analyzed the influence of various parameters on its performance. Especially, the maximum efficiency TENGs can be obtained under optimum force. It is realistic and useful for more efficient TENGs. Furthermore, this research stands a good chance of establishing standards for quantifying the efficiency of TENGs, which lays the basis for the further industrialization and multi-functionization of TENGs technology.Electronic supplementary materialThe online version of this article (10.1186/s11671-018-2764-2) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.