Objective: To provide clinical management guidelines for novel coronavirus in pregnancy.
Methods:On February 5, 2020, a multidisciplinary teleconference comprising Chinese physicians and researchers was held and medical management strategies of COVID-19 infection in pregnancy were discussed.
Results:Ten key recommendations were provided for the management of COVID-19 infections in pregnancy.
Conclusion:Currently, there is no clear evidence regarding optimal delivery timing, the safety of vaginal delivery, or whether cesarean delivery prevents vertical transmission at the time of delivery; therefore, route of delivery and delivery timing should be individualized based on obstetrical indications and maternal-fetal status.
Summary
In pregnancy, trophoblast invasion and uterine spiral artery remodeling are important for lowering maternal vascular resistance and increasing uteroplacental blood flow. Impaired spiral artery remodeling has long been implicated in preeclampsia, a major complication of pregnancy, but the underlying mechanisms remain unclear1, 2. Corin is a cardiac protease that activates atrial natriuretic peptide (ANP), a cardiac hormone important in regulating blood pressure3. Unexpectedly, corin expression was detected in the pregnant uterus4. Here we identify a novel function of corin and ANP in promoting trophoblast invasion and spiral artery remodeling. We show that pregnant corin- or ANP-deficient mice developed high blood pressure and proteinuria, characteristics of preeclampsia. In these mice, trophoblast invasion and uterine spiral artery remodeling were markedly impaired. Consistently, we find that ANP potently stimulated human trophoblasts in invading Matrigels. In patients with preeclampsia, uterine corin mRNA and protein levels were significantly lower than that in normal pregnancies. Moreover, we have identified corin gene mutations in preeclamptic patients, which decreased corin activity in processing pro-ANP. These results indicate that corin and ANP are essential for physiological changes at the maternal-fetal interface, suggesting that defects in corin and ANP function may contribute to preeclampsia.
The accuracy of NIPT for ChrX and ChrY can be improved substantially by integrating the results of maternal-plasma sequencing with those for maternal-WBC sequencing. The relatively high frequency of maternal mosaicism warrants mandatory WBC testing in both shotgun sequencing- and single-nucleotide polymorphism-based clinical NIPT after the finding of a potential fetal SCA.
In ovarian cancer, CD44+/CD117+ stem cells, also known as cancer‐initiating cells (CICs), are highly proliferative, have a low degree of differentiation, and are resistant to chemotherapeutics. Therefore, the CD44+/CD117+ subpopulation is thought to be an important target for novel therapeutic strategies. In this study, we investigated the role of microRNA‐199a (miR‐199a) in ovarian cancer stem cells. Luciferase reporter gene assays confirmed that miR‐199a targets CD44 via an miR‐199a‐binding site in the 3′‐UTR. CD44+/CD117+ ovarian CICs were enriched from human primary ovarian tumor tissues and confirmed by flow cytometric sorting. miR‐199a was cloned and transfected into ovarian CICs. CD44 mRNA and protein expression was significantly decreased in miR‐199a‐transfected ovarian CICs as compared with miR‐199a mutant‐transfected and untransfected cells. Cell cycle analysis, 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl‐tetrazolium bromide proliferation assays, the colony formation assay and the transwell migration assay indicated that miR‐199a significantly affected cell cycle regulation and suppressed the proliferation and invasive capacity of ovarian CICs in vitro. miR‐199a significantly increased the chemosensitivity of ovarian CICs to cisplatin, pacitaxel, and adriamycin, and reduced mRNA expression of the multidrug resistance gene ABCG2 as compared with miR‐199a mutant‐transfected and untransfected cells. The expression of stemness markers was also significantly reduced in miR‐199a‐transfected CICs as compared with miR‐199a mutant‐transfected and untransfected ovarian cells. Furthermore, xenograft experiments confirmed that miR‐199a suppressed the growth of xenograft tumors formed by ovarian CICs in vivo. Thus, expression of endogenous mature miR‐199a may prevent tumorigenesis in human ovarian cancer by regulating expression of its target gene CD44.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.