The protection of retinal pigment epithelium (RPE) injury plays an important role in the prevention of or in delaying the pathological progress of retinal degeneration diseases, like age-related macular degeneration (AMD), diabetic retinopathy, and retinitis pigmentosa. Oxidative stress has been identified as a major inducer of RPE injury, which eventually could lead to a loss of vision. Kaempferol is a natural flavonoid widely distributed in many edible plants, fruits, and traditional medicines and has been reported to have antioxidant, anti-inflammatory, anticancer, and antimicrobial activities. The present study demonstrates that the total antioxidant capacity of kaempferol is approximately two times stronger than that of lutein which is also a natural antioxidant that is widely used in the prevention or treatment of AMD. Our data indicates that kaempferol protects human RPE cells (ARPE-19) from hydrogen peroxide- (H2O2-) induced oxidative cell damage and apoptosis through the signaling pathways involving Bax/Bcl-2 and caspase-3 molecules proofed by real-time PCR and Western blot results. Kaempferol also inhibits the upregulated vascular endothelial growth factor (VEGF) mRNA expression levels induced by H2O2 in ARPE-19 cells and affects the oxidation and antioxidant imbalanced system in ARPE-19 cells treated by H2O2 through the regulations of both the activities of reactive oxygen species (ROS) and superoxide dismutase (SOD). Furthermore, our in vivo experimental results show that in sodium iodate-induced retinal degeneration rat model, kaempferol could protect sodium iodate-induced pathological changes of retina tissue and retinal cells apoptosis as well as the upregulated VEGF protein expression in RPE cells. In summary, these novel findings demonstrate that kaempferol could protect oxidative stressed-human RPE cell damage through its antioxidant activity and antiapoptosis function, suggesting that kaempferol has a potential role in the prevention and therapeutic treatment of AMD or other retinal diseases mediated by oxidative stress.
Construction of next-generation sequencing (NGS) libraries involves RNA manipulation, which often creates noisy, biased, and artifactual data that contribute to errors in transcriptome analysis. In this study, a total of 19 whole transcriptome termini site sequencing (WTTS-seq) and seven RNA sequencing (RNA-seq) libraries were prepared from Xenopus tropicalis adult and embryo samples to determine the most effective library preparation method to maximize transcriptomics investigation. We strongly suggest that appropriate primers/adaptors are designed to inhibit amplification detours and that PCR overamplification is minimized to maximize transcriptome coverage. Furthermore, genome annotation must be improved so that missing data can be recovered. In addition, a complete understanding of sequencing platforms is critical to limit the formation of false-positive results. Technically, the WTTS-seq method enriches both poly(A)+ RNA and complementary DNA, adds 5′- and 3′-adaptors in one step, pursues strand sequencing and mapping, and profiles both gene expression and alternative polyadenylation (APA). Although RNA-seq is cost prohibitive, tends to produce false-positive results, and fails to detect APA diversity and dynamics, its combination with WTTS-seq is necessary to validate transcriptome-wide APA.
BackgroundOverexpression of cyclin D1 dependent kinases 4 and 6 (CDK4/6) is a common feature of many human cancers including leukemia. LEE011 is a novel inhibitor of both CDK4 and 6. To date, the molecular function of LEE011 in leukemia remains unclear.MethodsLeukemia cell growth and apoptosis following LEE011 treatment was assessed through CCK-8 and annexin V/propidium iodide staining assays. Cell senescence was assessed by β-galactosidase staining and p16INK4a expression analysis. Gene expression profiles of LEE011 treated HL-60 cells were investigated using an Arraystar Human LncRNA array. Gene ontology and KEGG pathway analysis were then used to analyze the differentially expressed genes from the cluster analysis.ResultsOur studies demonstrated that LEE011 inhibited proliferation of leukemia cells and could induce apoptosis. Hoechst 33,342 staining analysis showed DNA fragmentation and distortion of nuclear structures following LEE011 treatment. Cell cycle analysis showed LEE011 significantly induced cell cycle G1 arrest in seven of eight acute leukemia cells lines, the exception being THP-1 cells. β-Galactosidase staining analysis and p16INK4a expression analysis showed that LEE011 treatment can induce cell senescence of leukemia cells. LncRNA microarray analysis showed 2083 differentially expressed mRNAs and 3224 differentially expressed lncRNAs in LEE011-treated HL-60 cells compared with controls. Molecular function analysis showed that LEE011 induced senescence in leukemia cells partially through downregulation of the transcriptional expression of MYBL2.ConclusionsWe demonstrate for the first time that LEE011 treatment results in inhibition of cell proliferation and induction of G1 arrest and cellular senescence in leukemia cells. LncRNA microarray analysis showed differentially expressed mRNAs and lncRNAs in LEE011-treated HL-60 cells and we demonstrated that LEE011 induces cellular senescence partially through downregulation of the expression of MYBL2. These results may open new lines of investigation regarding the molecular mechanism of LEE011 induced cellular senescence.Electronic supplementary materialThe online version of this article (doi:10.1186/s12935-017-0405-y) contains supplementary material, which is available to authorized users.
Decreased autophagy is accompanied by the development of a myeloproliferative state or acute myeloid leukemia (AML). AML cells are often sensitive to autophagy-inducing stimuli, prompting the idea that targeting autophagy can be useful in AML cytotoxic therapy. AML NB4 cells overexpressing microtubule-associated protein 1 light chain 3-green fluorescent protein were screened with 69 inhibitors to analyze autophagy activity. AML cells were treated with the polo-like kinase 1 (PLK1) inhibitors RO3280 and BI2536 before autophagy analysis. Cleaved LC3 (LC3-II) and the phosphorylation of mammalian target of rapamycin (mTOR), adenosine monophosphate-activated protein kinase, and Unc-51-like kinase 1 during autophagy was detected with western blotting. Autophagosomes were detected using transmission electron microscopy. Several inhibitors had promising autophagy inducer effects: BI2536, MLN0905, SK1-I, SBE13 HCL and RO3280. Moreover, these inhibitors all targeted PLK1. Autophagy activity was increased in the NB4 cells treated with RO3280 and BI2536. Inhibition of PLK1 expression in NB4, K562 and HL-60 leukemia cells with RNA interference increased LC3-II and autophagy activity. The phosphorylation of mTOR was reduced significantly in NB4 cells treated with RO3280 and BI2536, and was also reduced significantly when PLK1 expression was downregulated in the NB4, K562 and HL-60 cells. We demonstrate that PLK1 inhibition induces AML cell autophagy and that it results in mTOR dephosphorylation. These results may provide new insights into the molecular mechanism of PLK1 in regulating autophagy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.