No abstract
There has been a growing interest in using GPU to accelerate data analytics due to its massive parallelism and high memory bandwidth. The main constraint of using GPU for data analytics is the limited capacity of GPU memory. Heterogeneous CPU-GPU query execution is a compelling approach to mitigate the limited GPU memory capacity and PCIe bandwidth. However, the design space of heterogeneous CPU-GPU query execution has not been fully explored. We aim to improve state-of-the-art CPU-GPU data analytics engine by optimizing data placement and heterogeneous query execution. First, we introduce a semantic-aware fine-grained caching policy which takes into account various aspects of the workload such as query semantics, data correlation, and query frequency when determining data placement between CPU and GPU. Second, we introduce a heterogeneous query executor which can fully exploit data in both CPU and GPU and coordinate query execution at a fine granularity. We integrate both solutions in Mordred, our novel hybrid CPU-GPU data analytics engine. Evaluation on the Star Schema Benchmark shows that the semantic-aware caching policy can outperform the best traditional caching policy by up to 3x. Compared to existing GPU DBMSs, Mordred can outperform by an order of magnitude.
Currently, we face the next major shift in processor designs that arose from the physical limitations known as the "dark silicon effect". Due to thermal limitations and shrinking transistor sizes, multi-core scaling is coming to an end. A major new direction that hardware vendors are currently investigating involves specialized and energy-efficient hardware accelerators (e.g., ASICs) placed on the same die as the normal CPU cores. In this paper, we present a novel query processing engine called SiliconDB that targets such heterogeneous processor environments. We leverage the Sparc M7 platform to develop and test our ideas. Based on the SSB benchmarks, as well as other micro benchmarks, we compare the efficiency of SiliconDB with existing execution strategies that make use of co-processors (e.g., FPGAs, GPUs) and demonstrate speed-up improvements of up to 2×.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.