The deep learning methods in the field of computer vision and big data are becoming more and more mature. Through the application of big data and deep learning technology, the diagnosis of artificial intelligence medical image can be realized, which provides a new opportunity for the automatic analysis of obstetrics medical image and the assistance of doctors to realize high-precision intelligent diagnosis of diseases. The current medical obstetric image diagnosis platform mainly targets low-resolution medical obstetric image files, and does not consider the data-sharing problem of the distributed file system in different storage nodes, which greatly reduces the efficiency of obstetric image storage and diagnosis. Based on this, this article designs an obstetric image diagnostic platform based on cloud computing technology. First, a medical imaging platform was designed by combining cloud computing technology, caching technology, and a distributed file system. Secondly, the use of contrast-enhanced ultrasound technology provides a more accurate ultrasound image for assessing the structure, size, location, and developmental abnormalities of the placenta. Finally, the effectiveness of the obstetric imaging diagnostic platform proposed in this paper is verified by experiments. The results show that the platform has fast data processing speed and convenient use, which greatly reduces the cost of medical equipment and improves efficiency. The hospital only needs to collect the obstetric image of the patient at the front end, transfer it to the cloud for image processing, and finally diagnose the disease.INDEX TERMS Smart medicine, big data, cloud computing technology, obstetric imaging, diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.