Traumatic brain injury (TBI) is a major public health problem and a major cause of mortality and disability that imposes a substantial economic burden worldwide. Dexmedetomidine (DEX), a highly selective α-2-adrenergic receptor agonist that functions as a sedative and analgesic with minimal respiratory depression, has been reported to alleviate early brain injury (EBI) following traumatic brain injury by reducing reactive oxygen species (ROS) production, apoptosis and autophagy. Autophagy is a programmed cell death mechanism that serves a vital role in neuronal cell death following TBI. However, the precise role of autophagy in DEX-mediated neuroprotection following TBI has not been confirmed. The present study aimed to investigate the neuroprotective effects and potential molecular mechanisms of DEX in TBI-induced EBI by regulating neural autophagy in a C57BL/6 mouse model. Mortality, the neurological score, brain water content, neuroinflammatory cytokine levels, ROS production, malondialdehyde levels and neuronal death were evaluated by TUNEL staining, Evans blue extravasation, ELISA, analysis of ROS/lipid peroxidation and western blotting. The results showed that DEX treatment markedly increased the survival rate and neurological score, increased neuron survival, decreased the expression of the LC3, Beclin-1 and NF-κB proteins, as well as the cytokines IL-1β, IL-6 and TNF-α, which indicated that DEX-mediated inhibition of autophagy and neuroinflammation ameliorated neuronal death following TBI. The neuroprotective capacity of DEX is partly dependent on the ROS/nuclear factor erythroid 2-related factor 2 signaling pathway. Taken together, the results of the present study indicated that DEX improves neurological outcomes in mice and reduces neuronal death by protecting against neural autophagy and neuroinflammation.
Purpose: Traumatic brain injury (TBI) remains a major public health problem and cause of death. Ulinastatin (UTI), a serine protease inhibitor, has been reported to have an anti-inflammatory effect and play a role in immunoregulation and organ protection by reducing reactive oxygen species (ROS) production, oxidative stress and inflammation. However, the neuroprotective of UTI in TBI has not been confirmed. Therefore, this study aimed to investigate the neuroprotection and potential molecular mechanisms of UTI in TBI-induced EBI in a C57BL/6 mouse model. Methods: The neurological score and brain water content were evaluated. Enzyme-linked immunosorbent assay was used to detect neuroinflammatory cytokine levels, ROS and malondialdehyde detection to evaluate oxidative stress levels, and TUNEL staining and western blotting to examine neuronal damages and their related mechanisms. Results: Treatment with UTI markedly increased the neurological score; alleviated brain oedema; decreased the inflammatory cytokine tumour necrosis factor a, interleukin-1β (IL-1β), IL-6 and nuclear factor kappa B (NF-kB) levels; inhibited oxidative stress; decreased caspase-3 and Bax protein expressions; and increased the Bcl-2 levels, indicating that UTI-mediated inhibition of neuroinflammation, oxidative stress and apoptosis ameliorated neuronal death after TBI. The neuroprotective capacity of UTI is partly dependent on the TLR4/NF-kB/p65 signalling pathway. Conclusions: Therefore, this study reveals that UTI improves neurological outcomes in mice and reduces neuronal death by protecting against neural neuroinflammation, oxidative stress and apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.