The forebay of pumping stations is an important hydraulic structure that connects the channel with the inlet channel. Actual test observations and theoretical studies have shown that poor precursors produce backflow, vortex, and water flow disturbances in the forebay water. In this paper, taking a lateral inlet pump station as an example, we study the nonmeasures and five rectification measures—“Y” type diversion pier, “T” shaped diversion pier, narrow bottom hole, high and wide bottom, and diversion wall—through adopting the method of numerical simulation and model test. For the numerical simulation, the corresponding three-dimensional model is established by UG solid modeling software, and then the computational fluid is simulated numerically with CFX. Based on the analysis and comparison of the results during the test of numerical simulation and model test, the stability of the rectification measures is considered after taking into consideration the results of the uniformity test of the velocity distribution of the surface layer, the bottom layer, and the front section of each scheme. The proposed scheme 3 (“T” diversion pier) is regarded as the pumping station flow control measures.
In this paper, the Weather Research and Forecasting (WRF) model is coupled with the computational fluid dynamics (CFD) model to study the diffusion model of the accidental leakage of hazardous gas under different atmospheric stability conditions. First, the field test at Nanjing University was used to validate the different turbulence models of CFD. The experimental data confirm that the realizable k-ε model can describe the behavior of hazardous gas diffusion. On this basis, the diffusion process of the accidental release of tracer gas under different atmospheric stability conditions is simulated. The results show that atmospheric stability has a significant effect on the flow field distribution and the area of plume of hazardous substances. The ambient wind deflects under unstable conditions and vertical turbulence is slightly larger than that under neutral and stable conditions. Under stable conditions, the dilution of harmful gases is suppressed due to weak turbulent mixing. In addition, stable atmospheric conditions can increase near-surface gas concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.