Single‐atom catalysts (SACs), as homogeneous catalysts, have been widely explored for chemical catalysis. However, few studies focus on the applications of SACs in enzymatic catalysis. Herein, we report that a zinc‐based zeolitic‐imidazolate‐framework (ZIF‐8)‐derived carbon nanomaterial containing atomically dispersed zinc atoms can serve as a highly efficient single‐atom peroxidase mimic. To reveal its structure–activity relationship, the structural evolution of the single‐atom nanozyme (SAzyme) was systematically investigated. Furthermore, the coordinatively unsaturated active zinc sites and catalytic mechanism of the SAzyme are disclosed using density functional theory (DFT) calculations. The SAzyme, with high therapeutic effect and biosafety, shows great promises for wound antibacterial applications.
Nanozyme‐based tumor catalytic therapy has attracted widespread attention in recent years. However, its therapeutic outcomes are diminished by many factors in the tumor microenvironment (TME), such as insufficient endogenous hydrogen peroxide (H2O2) concentration, hypoxia, and immunosuppressive microenvironment. Herein, an immunomodulation‐enhanced nanozyme‐based tumor catalytic therapy strategy is first proposed to achieve the synergism between nanozymes and TME regulation. TGF‐β inhibitor (TI)‐loaded PEGylated iron manganese silicate nanoparticles (IMSN) (named as IMSN‐PEG‐TI) are constructed to trigger the therapeutic modality. The results show that IMSN nanozyme exhibits both intrinsic peroxidase‐like and catalase‐like activities under acidic TME, which can decompose H2O2 into hydroxyl radicals (•OH) and oxygen (O2), respectively. Besides, it is demonstrated that both IMSN and TI can regulate the tumor immune microenvironment, resulting in macrophage polarization from M2 to M1, and thus inducing the regeneration of H2O2, which can promote catalytic activities of IMSN nanozyme. The potent antitumor effect of IMSN‐PEG‐TI is proved by in vitro multicellular tumor spheroids (MCTS) and in vivo CT26‐tumor‐bearing mice models. It is believed that the immunomodulation‐enhanced nanozyme‐based tumor treatment strategy is a promising tool to kill cancer cells.
Sonodynamic therapy (SDT) is a promising non-invasive therapeutic modality. Compared to photo-inspired therapy, SDT provides many opportunities and benefits, including deeper tissue penetration, high precision, less side effects, and good patient compliance. Thanks to the facile engineerable nature of nanotechnology, nanoparticles-based sonosensitizers exhibit predominant advantages, such as increased SDT efficacy, binding avidity, and targeting specificity. This review aims to summarize the possible mechanisms of SDT, which can be expected to provide the theoretical basis for SDT development in the future. We also extensively discuss nanoparticle-assisted sonosensitizers to enhance the outcome of SDT. Additionally, we focus on the potential strategy of combinational SDT with other therapeutic modalities and discuss the limitations and challenges of SDT toward clinical applications.
The high reactive oxygen species (ROS) generation ability and simple construction of sonosensitizer systems remain challenging in sonodynamic therapy against the hypoxic tumor. In this work, we rationally prepared MOF‐derived double‐layer hollow manganese silicate nanoparticle (DHMS) with highly effective ROS yield under ultrasound irradiation for multimodal imaging‐guided sonodynamic therapy (SDT). The presence of Mn in DHMS increased ROS generation efficiency because it could be oxidized by holes to improve the electron–hole separation. Moreover, DHMS could produce oxygen in the tumor microenvironment, which helps overcome the hypoxia of the solid tumor and thus enhance the treatment efficiency. In vivo experiments demonstrated efficient tumor inhibition in DHMS‐mediated SDT guided by ultrasound and magnetic resonance imaging. This work presents a MOF‐derived nanoparticle with sonosensitive and oxygen generating ability, which provides a promising strategy for tumor hypoxia in SDT.
Carbon
nanomaterials have flourished for cancer therapy for decades.
However, their practical applications on clinical bases still pose
a challenge to address the dilemma of metabolism in vivo. In this study, an attempt is made to design a degradable carbon–silica
nanocomposite (CSN) with immunoadjuvant property, which could undergo
an enzyme-free degradation process into small particles (∼5
nm) and facilitate its clinical application. CSN harbors photothermal
and photodynamic properties and as an immunoadjuvant would help to
generate tumor-associated antigens and mature dendritic cells (DCs).
Potent antitumor effects have been achieved in both 4T1 and patient-derived
xenograft tumor models with tumor inhibition efficiencies of 93.2%
and 92.5%, respectively. We believe that this strategy will benefit
the possible clinical translation and carbon–silica-nanomaterial-based
cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.