NKG2D is an activating receptor expressed by all NK cells and subsets of T cells. It serves as a major recognition receptor for detection and elimination of transformed and infected cells and participates in the genesis of several inflammatory diseases. The ligands for NKG2D are self-proteins that are induced by pathways that are active in certain pathophysiological states. NKG2D ligands are regulated transcriptionally, at the level of mRNA and protein stability, and by cleavage from the cell surface. In some cases, ligand induction can be attributed to pathways that are activated specifically in cancer cells or infected cells. We review the numerous pathways that have been implicated in the regulation of NKG2D ligands, discuss the pathologic states in which those pathways are likely to act, and attempt to synthesize the findings into general schemes of NKG2D ligand regulation in NK cell responses to cancer and infection.
In recent years, roles of the immune system in immune surveillance of cancer have been explored using a variety of approaches. The roles of the adaptive immune system have been a major emphasis, but increasing evidence supports a role for innate immune effector cells such as natural killer (NK) cells in tumor surveillance. Here, we discuss some of the evidence for roles in tumor surveillance of innate immune cells, particularly NK cells and other immune cells that express germline-encoded receptors that are often labeled NK receptors. The impact of these receptors and the cells that express them on tumor suppression are summarized. We discuss in detail some of the pathways and events in tumor cells that induce or upregulate cell surface expression of the ligands for these receptors, and the logic of how those pathways serve to identify malignant, or potentially malignant cells. How tumors often evade tumor suppression mediated by innate killer cells is another major subject of the review. We end with a discussion of some of the implications of the various findings with respect to possibly therapeutic approaches.
Toll-like receptor (TLR) signaling is pivotal to innate and adaptive immune responses and must be tightly controlled. The mechanisms of TLR signaling have been the focus of extensive studies. Here we report that the tripartite-motif protein TRIM30alpha, a RING protein, was induced by TLR agonists and interacted with the TAB2-TAB3-TAK1 adaptor-kinase complex involved in the activation of transcription factor NF-kappaB. TRIM30alpha promoted the degradation of TAB2 and TAB3 and inhibited NF-kappaB activation induced by TLR signaling. In vivo studies showed that transfected or transgenic mice overexpressing TRIM30alpha were more resistant to endotoxic shock. Consistent with that, in vivo 'knockdown' of TRIM30alpha mRNA by small interfering RNA impaired lipopolysaccharide-induced tolerance. Finally, expression of TRIM30alpha depended on NF-kappaB activation. Our results collectively indicate that TRIM30alpha negatively regulates TLR-mediated NF-kappaB activation by targeting degradation of TAB2 and TAB3 by a 'feedback' mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.