These authors contributed equally to this work. SUMMARYDwarfing and semi-dwarfing are important agronomic traits that have great potential for the improvement of wheat yields. Rht12, a dominant gibberellic acid (GA)-responsive dwarfing gene from the gamma-rayinduced wheat mutant Karcagi 522M7K, is located in the long arm of chromosome 5A, which is closely linked with the locus Xwmc410. Rht12 is likely an ideal gene for GA biosynthesis and deactivation research in common wheat. However, information on the Rht12 locus and sequence is lacking. In this study, Rht12 significantly shortened stem cell length and decreased GA biosynthetic components. Using bulked segregant RNA-Seq, wheat 660k single nucleotide polymorphism chip detection, and newly developed simple sequence repeat markers, Rht12 was mapped to a 11.21-Mb region at the terminal end of chromosome 5AL, and was found to be closely linked with the Xw5ac207 SSR marker with a 10.73-Mb fragment deletion in all of the homologous dwarfing plants. Transcriptome analyses of the remaining 483-kb region showed significantly higher expression of the TraesCS5A01G543100 gene encoding the GA metabolic enzyme GA 2-b-dioxygenase in dwarfing plants than in high stalk plants, suggesting that Rht12 reduces plant height by activating TaGA2ox-A14. Taken together, our findings will promote cloning and functional studies of Rht12 in common wheat.
In recent years, poly adenine (polyA) DNA functionalized gold nanoparticles (AuNPs) free of modifications was fabricated with high density of DNA attachment and high hybridization ability similar to those of its thiolated counterpart. This nanoconjugate utilized poly adenine as an anchoring block for binding with the AuNPs surface thereby facilitated the appended recognition block a better upright conformation for hybridization, demonstrating its great potential to be a tunable plasmonic biosensor. It’s one of the key points for any of the practical applications to maintaining stable conjugation between DNA oligonucleotides and gold nanoparticles under various experimental treatments. Thus, in this research, we designed a simple but sensitive fluorescence turn-on strategy to systematically investigate and quantified the dissociation of polyA DNA on gold nanoparticles in diverse experimental conditions. DNA desorbed spontaneously as a function of elevated temperature, ion strength, buffer pH, organic solvents and keeping time. What’s more, evaluating this conjugate stability as affected by the length of its polyA anchor was another crucial aspect in our study. With the improved understanding from these results, we were able to control some of our experimental conditions to maintain a good stability of this kind of polyA DNA−AuNPs nanoconjugates.
Heterosis utilization is very important in hybrid seed production. An AL-type cytoplasmic male sterile (CMS) line has been used in wheat-hybrid seed production, but its sterility mechanism has not been explored. In the present study, we sequenced and verified the candidate CMS gene in the AL-type sterile line (AL18A) and its maintainer line (AL18B). In the late uni-nucleate stage, the tapetum cells of AL18A showed delayed programmed cell death (PCD) and termination of microspore at the bi-nucleate stage. As compared to AL18B, the AL18A line produced 100% aborted pollens. The mitochondrial genomes of AL18A and AL18B were sequenced using the next generation sequencing such as Hiseq and PacBio. It was found that the mitochondrial genome of AL18A had 99% similarity with that of Triticum timopheevii, AL18B was identical to that of Triticum aestivum cv. Chinese Yumai. Based on transmembrane structure prediction, 12 orfs were selected as candidate CMS genes, including a previously suggested orf256. Only the lines harboring orf279 showed sterility in the transgenic Arabidopsis system, indicating that orf279 is the CMS gene in the AL-type wheat CMS lines. These results provide a theoretical basis and data support to further analyze the mechanism of AL-type cytoplasmic male sterility in wheat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.