Aiming at the problems that tomatoes are fragile and the traditional end-effector design is not suitable for tomato picking, a combination of the bionic principle of FRE structure and finger design was proposed. Based on the physical properties of tomatoes, a flexible underactuated end-effector for tomato picking and sorting was designed. The optimal structural parameters of fingers were determined by finite element analysis, and the tomato grasping experiment was carried out. The results show that the flexible end can grasp and transport tomatoes with diameters ranging from 65 to 95 mm without damage, which can withstand 7 N tensile force, the load is more than 2 times of its own weight, the tomato coverage rate is greater than 23.6%, and the effective grab rate is 100% and has the advantages of the strong stability, universality, and protection. The research provides a novel solution for the design and application of the tomato picking and sorting robot end-effector.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.