This article presents an energy management approach for the hybrid energy storage system in an electric bus at different temperatures. An electric bus equipped with a semi-active hybrid energy storage system is considered as the research object. According to the urban climatic characteristics of the vehicle running, the convex optimization approach considering temperature factors is proposed. The purpose of this study is to minimize the energy loss and maximize the discharge and charge depth of the super capacitor. Simulation results show that the comprehensive energy efficiency of the proposed method is 83.31% and the comprehensive energy efficiency is improved by 2.42% at 25°C, which is compared with the rule-based power allocation method based on urban driving cycle in Harbin, China. When the ambient temperature is 25°C, the comprehensive energy efficiency of the proposed method is 81.03%. This result is improved by 1.45% and the battery power variance at 25°C is reduced by 20.11% compared with the rule-based power allocation method. Therefore, the proposed power distribution method can effectively improve the functioning of an electric bus at different temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.