This paper develops and experimentally validates a 3D-printed snake robot prototype. Its structure is designed to allocate limited room for each functional module (including an external power module, battery power module, the wireless control and transmission module and some detective sensors), so as to ensure the snake robot works in different environments. In order to control and track the snake robot, a low-cost MEMS-IMU (micro-electro-mechanical systems inertial measurement unit)-based snake robot motion tracking system is developed. Three algorithms (low-pass filter, baseline calibration, and Kalman filter) are used to eliminate noise from IMU’s acceleration data, thus minimizing the noise influence to tracking accuracy. Through signal processing, the IMU acceleration data can be effectively used for motion tracking. The result from the video tracking software is employed as a reference for comparison, so as to evaluate the motion tracking algorithm efficiency. The comparison results demonstrate high efficiency of the proposed IMU-based motion tracking algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.