Papillary thyroid carcinoma (PTC) is an aggressive histological subtype of thyroid carcinoma (THCA), whose occurrence rate is high. The participation of long noncoding RNAs in the pathologies of cancers has attracted significant attention during the past decades. The purpose of the current study is to investigate the role of NR2F1 antisense RNA 1 (NR2F1‐AS1) in PTC. The expression of NR2F1 in THCA samples was analyzed by bioinformatics tool gene expression profiling interactive analysis. Levels of NR2F1‐AS1, microRNA‐423‐5p (miR‐423‐5p), and SRY‐box 12 (SOX12) were evaluated by a quantitative reverse transcription‐polymerase chain reaction and Western blot. The impact of NR2F1‐AS1 on PTC cell proliferation and invasion was assessed by Cell Counting Kit‐8, EdU, and Transwell invasion assays. The interactions among NR2F1‐AS1, miR‐423‐5p, and SOX12 were determined by RNA immunoprecipitation and luciferase reporter assays. Consequently, we found that NR2F1‐AS1 and SOX12 levels were elevated in PTC, whereas miR‐423‐5p was downregulated in PTC cells. Functionally, NR2F1‐AS1 silence led to reduced proliferation and invasion of PTC cells. Mechanistically, NR2F1‐AS1 interacted with miR‐423‐5p to induce SOX12 expression in PTC cells. In conclusion, the present study firstly stated that NR2F1‐AS1 regulated miR‐423‐5p/SOX12 to promote proliferation and invasion of PTC, indicating NR2F1‐AS1 as a potential novel target for the molecular‐targeted therapy of PTC.
Background: Increasing reports have revealed that dysregulated expression of long non-coding RNAs (lncRNAs) is involved in pancreatic carcinoma progression. This study intends to explore the function and molecular mechanism of lncRNA HLA complex group 11 (HCG11) in pancreatic carcinoma. Methods: The expression profiles of HCG11 in pancreatic carcinoma samples were detected by qPCR. Bioinformatics analysis was applied to detect the associations among HCG11/miR-579-3p/MDM2. The malignant properties of pancreatic carcinoma cells were measured by numerous biological assays. Xenograft model was exploited to detect the effect of HCG11 on tumor growth. Results: A significant increase of HCG11 was occurred in pancreatic carcinoma samples. Knockdown of HCG11 suppressed the progression of pancreatic carcinoma cells. Bioinformatics analysis revealed that HCG11 upregulated MDM2 expression by competitively targeting miR-579-3p. The rescue assays showed that miR-579-3p reversed cell behaviors caused by HCG11, and MDM2 reversed cell properties induced by miR-579-3p. The Notch1 intracellular domain (NICD) and Hes1 protein levels were increased by overexpression of HCG11/MDM2. The tumor growth was suppressed after depletion of HCG11, followed by suppressing Ki67, PCNA and Vimentin expression, increasing TUNEL-positive cells and E-cadherin expression. Conclusions: Our observations highlighted that HCG11 contributed to the progression of pancreatic carcinoma by promoting growth and aggressiveness, and inhibiting apoptosis via miR-579-3p/MDM2/Notch/Hes1 axis.
SCC-S2 overexpression has been implicated in several human cancers, its correlation with prognosis and the mechanism how it reserved biological roles are still uncertain. The current study demonstrated that, in 142 archived colorectal carcinoma (CRC) tissue samples, SCC-S2 expression was significantly correlated with higher histological grade ( p=0.001), tumor invasion ( p=0.001), advanced Dukes staging ( p=0.002), positive regional lymph node metastasis ( p=0.024), and poor overall survival ( p<0.001). MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and Transwell assays showed that SCC-S2 significantly promoted the proliferation and invasion. SCC-S2 expression was also accompanied by the overexpression CyclinD1, matrix metalloproteinase-7 (MMP-7), active-β-catenin, yes-associated protein (YAP), and connective tissue growth factor (CTGF), as well as the depression of p-large tumor suppressor kinase 1 (p-LATS1) and p-YAP. Moreover, SCC-S2 interacted and colocalized with LATS1, the interaction may interrupt Hippo signaling and thereafter activate canonical Wnt signaling. In conclusion, our data suggested that SCC-S2 was associated with the progression and unfavorable prognosis of CRCs. Meanwhile, SCC-S2 facilitated canonical Wnt signaling and its downstream effectors (CyclinD1, MMP-7) and promoted tumor proliferation and invasion, which depended on the inhibition of Hippo signaling induced by SCC-S2-LATS1 interaction. These results indicated that SCC-S2 might be used as a novel target for the prevention and treatment of colorectal cancer.
Background Pancreatic cancer (PCa) is a fatal malignancy with poor prognosis, high recurrence and mortality. Substantial reports have suggested long non-coding RNAs (lncRNAs) are implicated in development of numerous malignant tumors, and PCa is included. However, the correlation between novel lncRNA mir-99a-let-7c cluster host gene (MIR99AHG) and PCa remains elusive and needs to be deeply investigated. Methods In this study, we firstly used RT-qPCR to examine MIR99AHG expression. Functional assays were implemented for determination of the role of MIR99AHG in PCa cells. Mechanism experiments were designed and carried out for exploring the regulatory mechanism involving MIR99AHG. Results MIR99AHG was distinctly overexpressed in PCa cell lines. MIR99AHG deficiency abrogated PCa cell proliferation, migration and invasion. Moreover, MIR99AHG up-regulation was induced by transcription factor forkhead box A1 (FOXA1). Furthermore, MIR99AHG modulated notch receptor 2 (NOTCH2) expression and stimulated Notch signaling pathway through sequestering microRNA-3129-5p (miR-3129-5p) and recruiting ELAV like RNA binding protein 1 (ELAVL1). Conclusions Altogether, the exploration of FOXA1/MIR99AHG/miR-3129-5p/ELAVL1/NOTCH2 axis in the progression of PCa might provide a meaningful revelation for PCa diagnosis and treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.