Remote sensing image retrieval (RSIR), which aims to efficiently retrieve data of interest from large collections of remote sensing data, is a fundamental task in remote sensing.Over the past several decades, there has been significant effort to extract powerful feature representations for this task since the retrieval performance depends on the representative strength of the features. Benchmark datasets are also critical for developing, evaluating, and comparing RSIR approaches. Current benchmark datasets are deficient in that 1) they were originally collected for land use/land cover classification and not image retrieval; 2) they are relatively small in terms of the number of classes as well the number of sample images per class; and 3) the retrieval performance has saturated. These limitations have severely restricted the development of novel feature representations for RSIR, particularly the recent deep-learning based features which require large amounts of training data. We therefore present in this paper, a new large-scale remote sensing dataset termed "PatternNet" that was collected specifically for RSIR. PatternNet was collected from high-resolution imagery and contains 38 classes with 800 images per class. We also provide a thorough review of RSIR approaches ranging from traditional handcrafted feature based methods to recent deep learning based ones. We evaluate over 35 methods to establish extensive baseline results for future RSIR research using the PatternNet benchmark Keywords: remote sensing, content based image retrieval (CBIR), benchmark dataset, handcrafted features, deep learning, convolutional neural networks
Learning powerful feature representations for image retrieval has always been a challenging task in the field of remote sensing. Traditional methods focus on extracting low-level hand-crafted features which are not only time-consuming but also tend to achieve unsatisfactory performance due to the content complexity of remote sensing images. In this paper, we investigate how to extract deep feature representations based on convolutional neural networks (CNN) for high-resolution remote sensing image retrieval (HRRSIR). To this end, two effective schemes are proposed to generate powerful feature representations for HRRSIR. In the first scheme, the deep features are extracted from the fully-connected and convolutional layers of the pre-trained CNN models, respectively; in the second scheme, we propose a novel CNN architecture based on conventional convolution layers and a three-layer perceptron. The novel CNN model is then trained on a large remote sensing dataset to learn low dimensional features. The two schemes are evaluated on several public and challenging datasets, and the results indicate that the proposed schemes and in particular the novel CNN are able to achieve state-of-the-art performance.
Conventional remote sensing image retrieval (RSIR) system usually performs single-label retrieval where each image is annotated by a single label representing the most significant semantic content of the image. In this scenario, however, the scene complexity of remote sensing images is ignored, where an image might have multiple classes (i.e., multiple labels), resulting in poor retrieval performance. We therefore propose a novel multilabel RSIR approach based on fully convolutional network (FCN). Specifically, FCN is first trained to predict segmentation map of each image in the considered image archive. We then obtain multilabel vector and extract region convolutional features of each image based on its segmentation map. The extracted region features are finally used to perform region-based multilabel retrieval. The experimental results show that our approach achieves state-ofthe-art performance in contrast to handcrafted and convolutional neural network features. Index Terms-Fully convolutional networks (FCN), multilabel retrieval, multilabel vector, region convolutional features (RCFs), remote sensing image retrieval (RSIR), single-label retrieval. I. INTRODUCTIONT HE RECENT development in remote sensing (RS) technology has resulted in a considerable volume of RS archives, which makes it a significant challenge of searching images of interest from a large-scale RS archive in the literature. Remote sensing image retrieval (RSIR) is a simple yet effective method to solve this problem. An RSIR system generally has two main parts: feature extraction and similarity measure. The goal of feature extraction is to develop the representation
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.