Objectives
Obesity and diabetes are well-known risk factors for the development of endometrial cancer. A high rate of aerobic glycolysis represents a key mechanism by which endometrial cancer cells consume glucose as its primary energy source. The up-regulated glycolytic pathway is a common therapeutic target whose inhibition has implications for anti-tumor activity in cancer cells. This study aimed to investigate the effect of various concentrations of glucose on cell proliferation in endometrial cancer.
Methods
ECC-1 and Ishikawa cells were treated with low glucose (1mM), normal glucose (5mM) and high glucose (25mM), and cytotoxicity, apoptosis, cell cycle, adhesion/invasion, and changes of AMPK/mTOR/S6 and MAPK pathways were evaluated.
Results
Our results revealed that high glucose increased cell growth and clonogenicity in two endometrial cancer cell lines in a dose dependent manner. Low glucose induced the activity of cleaved caspase 3 and caused cell cycle G1 arrest. High glucose increased the ability of adhesion and invasion by decreasing E-Cadherin and increasing Snail expression. In addition, high glucose increased glucose uptake and glycolytic activity through modulating the AMPK/mTOR/S6 and MAPK pathways.
Conclusions
Our findings suggest that glucose stimulated cell proliferation through multiple complex signaling pathways. Targeting glucose metabolism may be a promising therapeutic strategy in the treatment of endometrial cancer.
Circulating tumor cells consist of phenotypically distinct subpopulations that originate from the tumor microenvironment. We report a circulating tumor cell dual selection assay that uses discrete microfluidics to select circulating tumor cell subpopulations from a single blood sample; circulating tumor cells expressing the established marker epithelial cell adhesion molecule and a new marker, fibroblast activation protein alpha, were evaluated. Both circulating tumor cell subpopulations were detected in metastatic ovarian, colorectal, prostate, breast, and pancreatic cancer patients and 90% of the isolated circulating tumor cells did not co-express both antigens. Clinical sensitivities of 100% showed substantial improvement compared to epithelial cell adhesion molecule selection alone. Owing to high purity (>80%) of the selected circulating tumor cells, molecular analysis of both circulating tumor cell subpopulations was carried out in bulk, including next generation sequencing, mutation analysis, and gene expression. Results suggested fibroblast activation protein alpha and epithelial cell adhesion molecule circulating tumor cells are distinct subpopulations and the use of these in concert can provide information needed to navigate through cancer disease management challenges.
We report a novel strategy to enzymatically release affinity-selected cells, such as circulating tumor cells (CTCs), from surfaces with high efficiency (~90%) while maintaining cell viability (>85%). The strategy utilizes single-stranded DNAs that link a capture antibody to the surfaces of a CTC selection device. The DNA linkers contain a uracil residue that can be cleaved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.