Objective
In this study, we evaluated the efficacy of hydroxychloroquine (HCQ) against coronavirus disease 2019 (COVID-19) via a randomized controlled trial (RCT) and a retrospective study.
Methods
Subjects admitted to 11 designated public hospitals in Taiwan between April 1 and May 31, 2020, with COVID-19 diagnosis confirmed by pharyngeal real-time RT-PCR for SARS-CoV-2, were randomized at a 2:1 ratio and stratified by mild or moderate illness. HCQ (400 mg twice for 1 d or HCQ 200 mg twice daily for 6 days) was administered. Both the study and control group received standard of care (SOC). Pharyngeal swabs and sputum were collected every other day. The proportion and time to negative viral PCR were assessed on day 14. In the retrospective study, medical records were reviewed for patients admitted before March 31, 2020.
Results
There were 33 and 37 cases in the RCT and retrospective study, respectively. In the RCT, the median times to negative rRT-PCR from randomization to hospital day 14 were 5 days (95% CI; 1, 9 days) and 10 days (95% CI; 2, 12 days) for the HCQ and SOC groups, respectively (p = 0.40). On day 14, 81.0% (17/21) and 75.0% (9/12) of the subjects in the HCQ and SOC groups, respectively, had undetected virus (p = 0.36). In the retrospective study, 12 (42.9%) in the HCQ group and 5 (55.6%) in the control group had negative rRT-PCR results on hospital day 14 (p = 0.70).
Conclusions
Neither study demonstrated that HCQ shortened viral shedding in mild to moderate COVID-19 subjects.
BackgroundMesenchymal stem cells (MSCs) play a significant role in cancer initiation and metastasis, sometimes by releasing exosomes that mediate cell communication by delivering microRNAs (miRNAs). This study aimed to investigate the effects of exosomal miR-133b derived from MSCs on glioma cell behaviors.MethodsMicroarray-based analysis identified the differentially expressed genes (DEGs) in glioma. The expression patterns of EZH2 and miR-133b along with interaction between them were clarified in glioma. The expression of miR-133b and EZH2 in glioma cells was altered to examine their functions on cell activities. Furthermore, glioma cells were co-cultured with MSC-derived exosomes treated with miR-133b mimic or inhibitor, and EZH2-over-expressing vectors or shRNA against EZH2 to characterize their effect on proliferation, invasion, and migration of glioma cells in vitro. In vivo assays were also performed to validate the in vitro findings.ResultsmiR-133b was downregulated while EZH2 was upregulated in glioma tissues and cells. miR-133b was found to target and negatively regulate EZH2 expression. Moreover, EZH2 silencing resulted in inhibited glioma cell proliferation, invasion, and migration. Additionally, MSC-derived exosomes containing miR-133b repressed glioma cell proliferation, invasion, and migration by inhibiting EZH2 and the Wnt/β-catenin signaling pathway. Furthermore, in vivo experiments confirmed the tumor-suppressive effects of MSC-derived exosomal miR-133b on glioma development.ConclusionCollectively, the obtained results suggested that MSC-derived exosomes carrying miR-133b could attenuate glioma development via disrupting the Wnt/β-catenin signaling pathway by inhibiting EZH2, which provides a potential treatment biomarker for glioma.
We aimed to explore the mechanism of pramipexole (PPX) actions in the treatment of Parkinson’s disease (PD). Genes related to PD and PPX were screened through bioinformatics retrieval. The PD model was constructed by applying 1-methyl-4-phenylpyridinium (MMP+). The RNA expression levels of circSNCA, SNCA, apoptosis-related genes (BCL2, CASP3, BAX, PTEN and P53) and miR-7 were detected by qRT-PCR. Protein expression was determined by western blot. The interactions between circSNCA-miR-7-SNCA were verified by dual luciferase assay and immunofluorescence localization. Cell viability was determined by MTT assay. SNCA and circSNCA expression levels in PD were downregulated after PPX treatment, consistent with the levels of pro-apoptotic genes. CircSNCA increased SNCA expression by downregulating miR-7 in PD as a competitive endogenous RNA (ceRNA). Lower circSNCA expression was associated with the reduced expression of pro-apoptotic (CASP3, BAX, PTEN and P53) proteins. CircSNCA downregulation could decrease apoptosis and induce autophagy in PD. In conclusion, the downregulation of circSNCA by PPX treatment reduced cell apoptosis and promoted cell autophagy in PD via a mechanism that served as a miR-7 sponge to upregulate SNCA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.