Exosomes are attractive nucleic-acid carriers because of their favourable pharmacokinetic and immunological properties and of their ability to penetrate physiological barriers that are impermissible to synthetic drug-delivery vehicles. However, inserting exogenous nucleic acids, especially large messenger RNAs (mRNAs), into cell-secreted exosomes leads to low yields. Here, we report a cellular-nanoporation method for the production of large quantities of exosomes containing therapeutic mRNAs and targeting peptides. We transfected various source cells with plasmid DNAs, and stimulated the cells with a focal and transient electrical stimulus that promotes the release of exosomes carrying transcribed mRNAs and targeting peptides. Compared to bulk electroporation and to other exosome-production strategies, cellular nanoporation produced up to 50-fold more exosomes and more than a 10 3 -fold increase in exosomal mRNA transcripts, even from cells with low basal levels of exosome secretion. In orthotopic PTEN-deficient glioma mouse models, mRNA-containing exosomes restored tumour-suppressor function, enhanced tumourgrowth inhibition, and increased animal survival. Cellular nanoporation may enable the use of exosomes as a universal nucleic-acid carrier for applications requiring transcriptional manipulation.
Since the approval of anti-CTLA4 therapy (ipilimumab) for late-stage melanoma in 2011, the development of anticancer immunotherapy agents has thrived. The success of many immune-checkpoint inhibitors has drastically changed the landscape of cancer treatment. For some types of cancer, monotherapy for targeting immune checkpoint pathways has proven more effective than traditional therapies, and combining immunotherapy with current treatment strategies may yield even better outcomes. Numerous preclinical studies have suggested that combining immunotherapy with radiotherapy could be a promising strategy for synergistic enhancement of treatment efficacy. Radiation delivered to the tumor site affects both tumor cells and surrounding stromal cells. Radiation-induced cancer cell damage exposes tumor-specific antigens that make them visible to immune surveillance and promotes the priming and activation of cytotoxic T cells. Radiation-induced modulation of the tumor microenvironment may also facilitate the recruitment and infiltration of immune cells. This unique relationship is the rationale for combining radiation with immune checkpoint blockade. Enhanced tumor recognition and immune cell targeting with checkpoint blockade may unleash the immune system to eliminate the cancer cells. However, challenges remain to be addressed to maximize the efficacy of this promising combination. Here we summarize the mechanisms of radiation and immune system interaction, and we discuss current challenges in radiation and immune checkpoint blockade therapy and possible future approaches to boost this combination.
Tumour cell phagocytosis by antigen presenting cells (APCs) is critical to the generation of antitumour immunity. However, cancer cells can evade phagocytosis by upregulating antiphagocytosis molecule CD47. Here, we show that CD47 blockade alone is inefficient in stimulating glioma cell phagocytosis. However, combining CD47 blockade with temozolomide results in a significant pro-phagocytosis effect due to the latter's ability to induce endoplasmic reticulum stress response. Increased tumour cell phagocytosis subsequently enhances antigen cross-presentation and activation of cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) in APCs, resulting in more efficient T cell priming. This bridging of innate and adaptive responses inhibits glioma growth, but also activates immune checkpoint. Sequential administration of an anti-PD1 antibody overcomes this potential adaptive resistance. Together, these findings reveal a dynamic relationship between innate and adaptive immune regulation in tumours and support further investigation of phagocytosis modulation as a strategy to enhance cancer immunotherapy responses.
The clinical success of immune checkpoint inhibitors in treating metastatic and refractory cancers has generated significant interest in investigating their role in treating locally advanced diseases, thus requiring them to be combined with standard treatments in the hope of producing synergistic antitumor responses. Radiotherapy, in particular, has long been hypothesized to have actions complementary to those of immune checkpoint blockade, and a growing body of evidence indicates that cancer immunotherapy may also have radiosensitizing effects, which would provide unique benefit for locoregional treatments. Recent studies have demonstrated that when immune cells are activated by immunotherapeutics, they can reprogram the tumor micro-environment in ways that may potentially increase the radiosensitivity of the tumor. In this review, we highlight the evidence that supports reciprocal interactions between cancer immunotherapy and radiotherapy, where in addition to the traditional notion that radiation serves to enhance the activation of antitumor immunity, an alternative scenario also exists in which T-cell activation by cancer immunotherapy may sensitize tumors to radiation treatment through mechanisms that include normalization of the tumor vasculature and tissue hypoxia. We describe the empirical observations from preclinical models that support such effects and discuss their implications for future research and trial design.
Purpose: Despite its enormous successes, the overall response rate of cancer immunotherapy remains suboptimal, especially in breast cancer. There is an increased interest in combining immune checkpoint inhibitor with targeted agents to enhance antitumor effect. Anti-angiogenic drugs have been shown to synergize with immune checkpoint blockades, but the optimal setting for combining these two modalities and the underlying mechanisms of synergistic responses are not fully understood.Experimental Design: We tested the combination of anti-PD-1 and different doses of VEGFR2-targeting agents in syngeneic breast cancer mouse models. Tumor-infiltrated immune cell subsets were profiled by flow cytometry. A cytokine array was carried out to identify inflammatory changes in different treatment conditions. The efficacy of combined anti-angiogenic and anti-PD-1 therapy was further evaluated in patients with advanced triple-negative breast cancer (TNBC).Results: Blockade of VEGFR2 sensitizes breast tumors to PD-1 blockade in a dose-dependent manner. Although both conventional and low-dose anti-VEGFR2 antibody treatments normalize tumor vessels, low-dose VEGFR2 blockade results in more robust immune cell infiltration and activation and promotes the secretion of osteopontin (OPN) by CD8 þ T cells. OPN subsequently induces tumor cell production of TGF-b, which in turn upregulates PD-1 expression on immune cells. In patients with advanced TNBC, combined treatment with low-dose anti-VEGFR2 inhibitor and anti-PD-1 demonstrated excellent tolerability and efficacy. Higher OPN and TGF-b expressions correlated with improved treatment responses.Conclusions: Together, these results demonstrate a dosedependent synergism between anti-angiogenic therapy and immune checkpoint blockade, thus providing important insights into the optimal strategies for combining immunotherapy with molecular-targeted agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.