Metallic current collectors with three-dimensional (3D) porous structures have been considered as ideal hosts for Li metal anodes because of their ability to accommodate anode volume fluctuations and suppress Li dendrite formation. However, in a conductive 3D porous framework, Li preferentially deposits at the top surface, resulting in uneven deposition, and ultimately forms Li dendrites. Herein, we propose a deposition regulation strategy by fabricating a lithiophilic nanoporous CuSnAl layer at the bottom of a porous Cu foam to induce bottom-up and dense Li deposition. The as-prepared CuSnAl@Cu foam demonstrates enhanced Li deposition reversibility with a lifespan over 2000 h in symmetrical cells at 1 mA cm −2 . Full cells coupled with lithiated CuSnAl@Cu foam and a LiFePO 4 cathode exhibit outstanding electrochemical performance, with a Coulombic efficiency (CE) of 99.6% over 300 cycles, which is much better than that using a pure Cu foam or Cu foil. Moreover, the electric field distribution at the CuSnAl layer has been directly observed to disclose the intrinsic mechanism of bottom-up Li growth. This design of 3D metallic current collectors with a lithiophilicity gradient provides new insights into stable Li metal anodes, and thus, into Li metal batteries.
The 3D porous current collector has been considered as an ideal host for a metallic lithium anode to address the challenges of volume expansion. However, lithium tends to deposit on...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.