The paper demonstrates that quasi-biennial oscillation (QBO)-like oscillations can be simulated in an ensemble of dry GCM dynamical cores that are driven by a simple Held-Suarez temperature relaxation and lowlevel Rayleigh friction. The tropical stratospheric circulations of four dynamical cores, which are options in NCAR's Community Atmosphere Model, version 5 (CAM5), are intercompared. These are the semi-Lagrangian (SLD) and Eulerian (EUL) spectral transform, finite-volume (FV), and spectral element (SE) dynamical cores. The paper investigates how the model design choices impact the wave generation, propagation, and dissipation mechanisms in the equatorial region. SLD, EUL, and SE develop spontaneous QBO-like oscillations in the upper equatorial stratosphere, whereas FV does not sustain the oscillation. Transformed Eulerian-mean (TEM) analyses reveal that resolved waves are the dominant drivers of the QBOs. However, the Eliassen-Palm flux divergence is strongly counteracted by the TEM momentum budget residual, which represents the forcing by diffusion and thermal damping. Interestingly, a reversed Brewer-Dobson circulation accelerates the downward propagation of the SLD's QBO, whereas the EUL's and SE's QBOs are slowed by a mean ascent. Waves are abundant in the SLD's, EUL's, and SE's tropical atmosphere despite the absence of moist convection as a typical wave trigger. Dynamic instabilities are suggested as a wave-triggering mechanism in the troposphere and wave-dissipation process in the stratosphere. In particular, there are indications that the increased occurrences of strongly negative instability indicators in SLD, EUL, and SE are related to more vigorous wave activities and higher magnitudes of the resolved wave forcing in comparison to FV.
The modon, a pair of counter‐rotating vortices propelling one another along a straight line, is an idealization of some observed large‐scale and small‐scale atmospheric and oceanic processes (e.g., twin cyclones), providing a challenging nonlinear test for fluid‐dynamics solvers (known as “dynamical cores”). We present an easy‐to‐setup test of colliding modons suitable for both shallow‐water and three‐dimensional dynamical cores on the sphere. Two pairs of idealized modons are configured to collide, exchange vortices, and depart in opposite directions, repeating indefinitely in the absence of ambient rotation. This test is applicable to both hydrostatic and nonhydrostatic dynamical cores and is particularly challenging for refined grids on the sphere, regardless of solution methodology, or vertical coordinate. We applied this test to three popular dynamical cores, used by three different general circulation models: the Spectral‐Element (SE) core of the Community Atmosphere Model, the Geophysical Fluid Dynamics Laboratory (GFDL) spectral core, and the GFDL Finite‐Volume Cubed‐Sphere dynamical core (FV3). Tests with a locally refined grid and nonhydrostatic dynamics were also performed with FV3. All cores tested were able to capture the propagation, collision, and exchange of the modons, albeit the rate at which the modon was diffused varied between the three cores and showed a strong dependence on the strength of hyperdiffusion.
[1] The ability of general circulation models (GCMs) to simulate the quasi-biennial oscillation (QBO) is an important model characteristic. Typically, the moist convective parameterization is believed to be the key GCM component that triggers tropical waves, thereby forcing wave-mean flow interactions. We show that QBO-like oscillations can also be simulated in a dry dynamical core driven by the Held-Suarez forcing. No gravity wave drag parameterization is applied. The simulations utilize the semi-Lagrangian spectral transform dynamical core of National Center for Atmospheric Research's Community Atmosphere Model. The QBO-like signal has a long period between 42-45 months and occurs in the upper stratosphere; different from observations. However, the amplitudes, asymmetries, and meridional extent closely resemble the observed QBO. Wave-number frequency analysis shows that resolved equatorially trapped waves are abundant despite the absence of cumulus convection. A Transformed Eulerian-Mean analysis suggests that the divergence of the Eliassen-Palm flux and vertical advection provide most of the forcing counteracted by diffusion.Citation: Yao, W., and C. Jablonowski (2013), Spontaneous QBOlike oscillations in an atmospheric model dynamical core, Geophys.
The paper demonstrates that sudden stratospheric warmings (SSWs) can be simulated in an ensemble of dry dynamical cores that miss the typical SSW forcing mechanisms like moist processes, land–sea contrasts, or topography. These idealized general circulation model (GCM) simulations are driven by a simple Held–Suarez–Williamson (HSW) temperature relaxation and low-level Rayleigh friction. In particular, the four dynamical cores of NCAR’s Community Atmosphere Model, version 5 (CAM5), are used, which are the semi-Lagrangian (SLD) and Eulerian (EUL) spectral-transform models and the finite-volume (FV) and the spectral element (SE) models. Three research themes are discussed. First, it is shown that SSW events in such idealized simulations have very realistic flow characteristics that are analyzed via the SLD model. A single vortex-split event is highlighted that is driven by wavenumber-1 and -2 wave–mean flow interactions. Second, the SLD simulations are compared to the EUL, FV, and SE dynamical cores, which sheds light on the impact of the numerical schemes on the circulation. Only SLD produces major SSWs, while others only exhibit minor stratospheric warmings. These differences are caused by SLD’s more vigorous wave–mean flow interactions in addition to a warm pole bias, which leads to relatively weak polar jets in SLD. Third, it is shown that tropical quasi-biennial oscillation (QBO)–like oscillations and SSWs can coexist in such idealized HSW simulations. They are present in the SLD dynamical core that is used to analyze the QBO–SSW interactions via a transformed Eulerian-mean (TEM) analysis. The TEM results provide support for the Holton–Tan effect.
Background Occlusal splints are often used to curb the impacts of sleep bruxism (SB) on the dentition, and over‐the‐counter (OCT) options are becoming increasingly popular. OTC splints are usually fabricated at home by patients, but not routinely evaluated by dental professionals. It is unclear how OCT splints compare with more traditional splints that receive dental oversight. Objectives The present randomized controlled study tested how an OTC splint compared with a gold standard bite splint in terms of patient compliance (primary outcome) and efficacy (secondary outcomes). Methods Sixty‐seven subjects were randomly assigned to receive either the OTC (SOVA, N = 35) splint or the gold standard “Michigan” bite splint (MI, N = 32), with 61 completing the study (SOVA, N = 30; MI, N = 31). OTC‐splint subjects were required to fabricate their splints to clinically acceptable standards. Both groups wore the splints nightly for four months. Compliance was measured via daily diary. Efficacy outcomes evaluated stability, retention, periodontal health, night‐time rhythmic masticatory muscle activity (RMMA), and material wear. Results OTC‐splint subjects had difficulty fabricating splints to clinically acceptable standards. The number of night‐time RMMA bursts was significantly greater for the OTC splint group. Compliance and all other efficacy measurements were not significantly different between‐groups. Conclusions The results support the potential use of OTC splints for curbing the impacts of SB. However, the results strongly suggest that dentists should be actively engaged in overseeing patients' use of self‐fabricated appliances. This clinical trial is registered at http://ClinicalTrials.gov, Identifier number NCT02340663.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.