This work is concerned with the convergence and stability of the truncated Euler-Maruyama (EM) method for super-linear stochastic differential delay equations (SDDEs) with time-variable delay and Poisson jumps. By constructing appropriate truncated functions to control the super-linear growth of the original coefficients, we present two types of the truncated EM method for such jump-diffusion SDDEs with time-variable delay, which is proposed to be approximated by the value taken at the nearest grid points on the left of the delayed argument. The first type is proved to have a strong convergence order which is arbitrarily close to 1/2 in mean-square sense, under the Khasminskii-type, global monotonicity with U function and polynomial growth conditions. The second type is convergent in qth (q < 2) moment under the local Lipschitz plus generalized Khasminskii-type conditions. In addition, we show that the partially truncated EM method preserves the mean-square and H∞ stabilities of the true solutions. Lastly, we carry out some numerical experiments to support the theoretical results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.