This paper is concerned with time-decay rates of the weak solutions to the 3D compressible magnetohydrodynamic flows with discontinuous initial data and large oscillations. The global existence of weak solutions to the Cauchy problem of the 3D compressible magnetohydrodynamic flows has been established by Suen-Hoff (Arch.
We study local existence and uniqueness of a strong solution to the kinetic thermomechanical Cucker-Smale (in short TCS) model coupled with incompressible Navier-Stokes (NS) equations in the whole space. The coupled system consists of the kinetic TCS equation for particle ensemble and the incompressible NS equations for a fluid via a drag force. For the strong solution, we investigate the blow-up mechanism for the coupled system, and we also study the global existence of a weak solution in the whole space.
We study slow flocking phenomenon arising from the dynamics of Cucker-Smale (CS) ensemble with chemotactic movements in a self-consistent temperature field. For constant temperature field, our situation reduces to the previous CS model with chemotactic movements. When a large CS ensemble with chemotactic movements is placed in a self-consistent temperature field, the dynamics of the CS ensemble can be effectively described by the kinetic thermodynamic CS (TCS) equation with chemotactic movements, which corresponds to the coupled collisional transport-reaction diffusion system. For the proposed coupled model, we provide a global solvability of strong solutions and their asymptotic flocking estimates which exhibit slow algebraic relaxation toward the flocking state. Our analytical results show that asymptotic flocking is robust with respect to a small perturbation of a constant temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.