BACKGROUND Moringa oleifera (M. oleifera) leaves are rich in nutrients and bioactive ingredients. This study was aimed at evaluating the anti‐fatigue effect of the ethanol extract of M. oleifera leaves (MLEE) on mice and its primary mechanism of action using a weight‐loaded forced swimming test. In the present study, MLEE was prepared by ultrasound‐assisted extraction, and its anti‐fatigue effect and antioxidant capacity were evaluated in mice. Mice were administrated MLEE (320 mg kg−1 body weight) for 15 days. RESULTS MLEE supplementation significantly increased levels of glucose and non‐esterified fatty acids (NEFA), while decreasing levels of lactate and blood urea nitrogen in serum (P < 0.05); the levels of glycogen in the liver and muscle were also increased, as was the activity of glycogen synthase and the level of NEFA in muscle (P < 0.05). According to a Western blot analysis, MLEE increased the expression of AMPKα1, JNK, AKT and STAT3 in the muscle of mice. CONCLUSION Our findings indicate that MLEE has an anti‐fatigue effect via the AMPK‐linked route, which enables it to control energy metabolism and enhance antioxidant enzyme activity. © 2023 Society of Chemical Industry.
Cold is a common source of stress in the alpine areas of northern China. It affects the microbial community, resulting in the invasion of pathogenic microorganisms and intestinal diseases. In recent years, studies have reported that Chinese herbal extracts and their fermentation broth have a significant beneficial effect on gut microbiota. This study aimed to investigate the probiotic effect of a self-designed Chinese herbs complex on the gut microbiota of rats exposed to cold. The rats were treated with intermittent cold exposure and Chinese herbs complex for 14 days, and the gut microbiota composition and other parameters were assayed. The 16s ribosomal DNA high-throughput sequencing and analysis confirmed that the Chinese herbs complex positively improved the gut microbiota. We found that cold exposure could lead to significant changes in the composition of gut microbiota, and affect the intestinal barrier and other physiological functions. The relative abundance of some probiotics in the genus such as Roseburia, Parasutterella, and Elusimicrobium in rats treated with Chinese herbs complex was significantly increased. Serum D-lactic acid (D-LA) and lipopolysaccharide (LPS) were increased in the cold exposure group and decreased in the Chinese herbs complex-treated group. Moreover, the Chinese herbs complex significantly increased the protein expression of occludin. In conclusion, the Chinese herbs complex is effective in restoring the gut microbiota caused by cold exposure, improving the function of the intestinal barrier, and may act as a prebiotic in combatting gut dysbiosis.
Objective Studies have shown that both short-term and long-term cold exposures disturb the biological process. The aim of the present study is to investigate the effects of intermittent cold exposure on proteomic profiles in the hypothalamus and pituitary of female Sprague-Dawley (SD) rats. Materials and methods The rats were exposed to -10°C in a cabin for 4 h per day, and the treatment lasted for 14 days. The comparative label-free LC-MS/MS analysis was performed to investigate the changes of proteomic profiles in the hypothalamus and pituitary. ELISA analysis was used to validate the expression of differential proteins. Results 22 differential proteins in the hypothalamus and 75 differential proteins in the pituitary were identified by the label-free proteomic analysis. Gene ontology annotation and enrichment analysis indicated that cold exposure disrupted protein phosphorylation, filopodium assembly, intracellular protein transport, peripheral nervous system neuron axonogenesis, spinal cord development, Golgi organization, positive regulation of pseudopodium assembly, and cell-cell adhesion. Three proteins (Cdc42, Ptprs, and Setd7) were down-regulated in the cold exposure group. Conclusion The results indicate that intermittent cold exposure alters the proteomic profiles of hypothalamus and pituitary in female rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.