Chemotherapy has advanced modern agriculture with costly side effects such as the extinction of beneficial species, resistant pest resurgence, environmental pollution, tainted food consumption, and health implications. Attention is now focused on biopesticides as a solution to the abovementioned disadvantages. Additionally, there is a growing need to understand the range and relative effectiveness of biopesticides in controlling pests and promoting sustainable agriculture. The latter is the major driver of the Sustainable Development Goals (SDGs). In comparison to synthetic pesticides, biopesticides offer nearly similar protection against the most notorious pests, except Albugo candida (oomycetes), Ustilago maydis (fungi), Phytomonas spp. (protozoa), Nacobbus aberrans (nematode), and Cyperus rotundus (weed). This study shows that viruses are more vulnerable to essential oils, nematodes and weeds to natural enemies, herbivorous insects to biochemical insecticides, and plant pathogens to plant-incorporated protectants and microbial pesticides. This work also demonstrates that it is preferable to use plant-derived biopesticides in a field concurrently. Incorporating these findings into large-scale farming via the integrated pest management method would improve the outcome of sustainable agriculture (SA), which connects 11 of the 17 SDGs. Despite their proven efficacy and sustainable attributes, biopesticides have some deficiencies, such as slow action and a short shelf life span, which can be improved by omics, RNA interference, and nano-based technologies. This field of technologies provides relevant prospects for improving existing biopesticides and discovering and developing new bio-controlling agents (BCA).
Hydrocarbons are a common contaminant in both terrestrial and aquatic ecological systems. This is most likely due to the widespread use of hydrocarbons as everyday energy sources and precursors in the majority of chemical manufacturing applications. Because of their physical and chemical properties, most hydrocarbons in the environment are resistant to degradation. Although several derivatives are classified as xenobiotics, their persistence in the environment has induced microorganisms to devise ingenious strategies for incorporating their degradation into existing biochemical pathways. Understanding these mechanisms is critical for microbial utilization in bioremediation technologies. This chapter focuses on recalcitrant and persistent hydrocarbons, describing the reasons for their resistance to biodegradation as well as the effects on ecological systems. Furthermore, aerobic and anaerobic degradation pathways, as well as ancillary strategies developed by various microorganisms in the degradation of hydrocarbon pollutants, are discussed.<br>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.