Precipitation and utilization of lignin from black liquor (BL) offers many promising advantages to modern kraft pulp mills. A novel process, known as "LignoBoost", has recently been introduced as a process for separating lignin from BL; it results in lignins with a low ash and high dry solid content. There is a lack of knowledge regarding the influences of process parameters on the behavior of lignin in the precipitation step. In this study, the yield of precipitated lignin and its average molecular weight (MWt) and carbohydrate content were the focus. Nuclear magnetic resonance (NMR) analysis showed that the lignin yield increased at lower pH and temperatures or when the ion strength of BL was elevated. High yield lignins contained more low MWt components and such lignins have more phenolic OH and methoxy groups. Xylan content of the lignins decreased with decreasing pH and increasing temperature, but glucomannan content was virtually unaffected by the conditions of precipitation.
In this investigation, a modified Poisson−Boltzmann approach has been used to estimate the mean ion concentration distributions of ionic species present in black liquors around charged kraft lignin macromolecules at industrially relevant conditions. The distributions were utilized to predict the double layer repulsion and, further, predict the overall pair interaction potentials between two kraft lignin macromolecules or particles immersed in the black liquor electrolyte. The properties of softwood black liquors were used as input data to the model. The numerical results predicted the pair interaction potentials to remain repulsive up to salt concentrations of about 2.5 M at pOH 1. The critical coagulation concentration of salt was predicted to decrease as the pOH of the black liquor was increased. The predictions at 65 °C and moderate levels of pOH (3.5) and salt concentration (1.9 M) were found to be in good agreement with previous observations reported in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.