The proposed risk scores and categories have a high degree of discrimination for predicting mortality and represent an improvement over existing consensus-based methods. Risk models incorporating these measures may be used to compare mortality outcomes across institutions with differing case mixes.
Background—
Perioperative myocardial infarction or cardiac arrest is associated with significant morbidity and mortality. The Revised Cardiac Risk Index is currently the most commonly used cardiac risk stratification tool; however, it has several limitations, one of which is its relatively low discriminative ability. The objective of the present study was to develop and validate a predictive cardiac risk calculator.
Methods and Results—
Patients who underwent surgery were identified from the American College of Surgeons' 2007 National Surgical Quality Improvement Program database, a multicenter (>250 hospitals) prospective database. Of the 211 410 patients, 1371 (0.65%) developed perioperative myocardial infarction or cardiac arrest. On multivariate logistic regression analysis, 5 predictors of perioperative myocardial infarction or cardiac arrest were identified: type of surgery, dependent functional status, abnormal creatinine, American Society of Anesthesiologists' class, and increasing age. The risk model based on the 2007 data set was subsequently validated on the 2008 data set (n=257 385). The model performance was very similar between the 2007 and 2008 data sets, with C statistics (also known as area under the receiver operating characteristic curve) of 0.884 and 0.874, respectively. Application of the Revised Cardiac Risk Index to the 2008 National Surgical Quality Improvement Program data set yielded a relatively lower C statistic (0.747). The risk model was used to develop an interactive risk calculator.
Conclusions—
The cardiac risk calculator provides a risk estimate of perioperative myocardial infarction or cardiac arrest and is anticipated to simplify the informed consent process. Its predictive performance surpasses that of the Revised Cardiac Risk Index.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.