Neste trabalho apresentamos um estudo de pares de Codazzi em superfícies de variedades homogêneas tridimensionais. Inicialmente, apresentamos um resultado abstrato para pares de Codazzi em superfícies completas com curvatura Gaussiana não-positiva e o aplicamos para obter resultados do tipo Emov e Milnor para superfícies completas nas formas espaciais não-Euclidianas. Para superfícies de espaços produto, a técnica de pares de Codazzi é utilizada na apresentação de um resultado do tipo Liebmann para superfícies completas com curvatura Gaussiana constante. Nos espaços homogêneos E(κ, τ ), com τ = 0, apresentamos um par de Codazzi denido sobre superfícies de curvatura média constante, cuja sua (2, 0)-parte é a diferencial de Abresch-Rosenberg.Palavras-Chaves: pares de Codazzi; variedades homogêneas; conjectura de Milnor; curvatura Gaussiana limitada; curvatura Gaussiana constante; curvatura média constante.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.