The outbreak of Ebola virus disease (EVD) continues to spread through West Africa. Since the first report of EVD in March 2014, the number of cases has increased rapidly, with the fatality rate of >50%. The most prevalent Ebola virus belongs to the species of Zaire ebolavirus, with a fatality rate as high as 90%. Although there were cases introduced into other continents, Africa is the endemic area where fruit bats and apes are suspected to be Ebola virus carriers. The virus might be transmitted from the host animals to humans if humans consume raw or not fully cooked and contaminated meats. However, human-to-human transmission via close contact is the major route of current outbreaks. EVD can occur during any season and affect people of any race and age group. Direct contact with body fluids of EVD patients or living in contaminated environments greatly increases the risk of being infected. Transmission via aerosol less likely, but transmission via virus-containing droplets is possible in humans. Thus, health care providers are facing danger of getting Ebola virus infection. To date, vaccines, drugs and/or therapies to prevent Ebola virus infection or treat EVD are limited. Medical workers should follow the current standard prophylactic procedures. The military can orchestrate efficient care to mass EVD patients. Although it is necessary to speed up the pace of developing effective vaccine and therapeutics for the prevention and treatment of EVD, public health prevention and management should be important issue at present to control the spread of this disease cost-effectively.
In this paper, a rare earth metal terbium ion as the central metal ion, a nanohydroxyapatite powder of the lanthanum doped terbium was synthesis by precipitation with hydroxyapatite as ligand. The sample was characterized by infrared spectrum, fluorescence spectrum and X ray diffraction instrument, and the thermal properties and fluorescence properties, structure of powderes were discussed. A nanohydroxyapatite powder of the lanthanum doped terbium achieves the maximum luminous intensity, when the La3+ doping concentration of Tb3+ was HAP 5% (La3+ and Tb3+ mole fraction ratio) devices. Rare earth powder of the lanthanum doped terbium hydroxyapatite has the stability chemical properties, the luminescence properties and good biological activity, the rare earth powder has good luminescent properties can be used in preparation of a good light emitting device. At the same time a nanohydroxyapatite powder of the lanthanum doped terbium has good antibacterial property, can be used as antibacterial materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.