As the main advantage of μPADs is compact and low-cost, we suggest that three kinds of technology could be utilized to develop the prototype of μPADs-based instruments rapidly, including open source hardware-Aduino, smart phone and 3D printing.
Recent advances in end-to-end continuous-flow synthesis are rapidly expanding the capabilities of automated customized syntheses of small-molecule pharmacophores, resulting in considerable industrial and societal impacts; however, many hurdles persist that limit the number of sequential steps that can be achieved in such systems, including solvent and reagent incompatibility between individual steps, cumulated by-product formation, risk of clogging and mismatch of timescales between steps in a processing chain. To address these limitations, herein we report a strategy that merges solid-phase synthesis and continuous-flow operation, enabling push-button automated multistep syntheses of active pharmaceutical ingredients. We demonstrate our platform with a six-step synthesis of prexasertib in 65% isolated yield after 32 h of continuous execution. As there are no interactions between individual synthetic steps in the sequence, the established chemical recipe file was directly adopted or slightly modified for the synthesis of twenty-three prexasertib derivatives, enabling both automated early and late-stage diversification.
The development of high‐performance but low‐cost catalysts for the electrochemical oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is of central importance for realizing the prevailing application of metal–air batteries. Herein a facile route is devised to synthesize S, N codoped carbon cubes embedding Co–Fe carbides by pyrolyzing the Co–Fe Prussian blue analogues (PBA) coated with methionine. Via the strong metal–sulfur interaction, the methionine coating provides a robust sheath to restrain the cubic morphology of PBA upon pyrolysis, which is proved highly beneficial for promoting the specific surface area and active sites exposure, leading to remarkable bifunctionality of ORR and OER comparable to the benchmarks of Pt/C and RuO2. Further elaborative investigations on the activity origin and postelectrolytic composition unravel that for ORR the high activity is mainly contributed by the S, N codoped carbon shell with the inactive carbide phase converting into carbonate hydroxides. For OER, the embedded Co–Fe carbides transform in situ into layered (hydr)oxides, serving as the actual active sites for promoting water oxidation. Zn–air batteries employing the developed hollow structure as the air cathode catalyst demonstrate superb rechargeability, energy efficiency, as well as portability.
As a pump-free and lightweight analytical tool, paper-based microfluidic analytical devices (μPADs) attract more and more interest. If the flow speed of μPAD can be programmed, the analytical sequences could be designed and they will be more popular. This reports presents a novel μPAD, driven by the capillary force of cellulose powder, printed by a desktop three-dimensional (3D) printer, which has some promising features, such as easy fabrication and programmable flow speed. First, a suitable size-scale substrate with open microchannels on its surface is printed. Next, the surface of the substrate is covered with a thin layer of polydimethylsiloxane (PDMS) to seal the micro gap caused by 3D printing. Then, the microchannels are filled with a mixture of cellulose powder and deionized water in an appropriate proportion. After drying in an oven at 60 °C for 30 min, it is ready for use. As the different channel depths can be easily printed, which can be used to achieve the programmable capillary flow speed of cellulose powder in the microchannels. A series of microfluidic analytical experiments, including quantitative analysis of nitrite ion and fabrication of T-sensor were used to demonstrate its capability. As the desktop 3D printer (D3DP) is very cheap and accessible, this device can be rapidly printed at the test field with a low cost and has a promising potential in the point-of-care (POC) system or as a lightweight platform for analytical chemistry.
In this study, we developed a novel and facile method for fabricating paper-based microfluidic analytical devices (mPADs) with dynamic mask photo curing (DMPC), generated by a desktop stereolithography (SL) three-dimensional printer (3DP). First, we immersed the filter paper in ultraviolet (UV) resin to cover it evenly. Next, we exposed it to UV-light through a dynamic mask of the negative channel pattern.After curing, the UV-exposed regions become highly hydrophobic, creating hydrophobic barriers. Finally, we washed the uncured resin with anhydrous alcohol and fine mPADs were obtained. The resolution of the fabricated hydrophilic channels was 367 AE 20 mm, with a between-channel hydrophobic barrier of 400 AE 21 mm. To verify this method's performance, we fabricated mPADs with DMPC for quantitative analysis of nitrite ion. This new method represents a leap forward in terms of time saved. Since all hydrophobic barriers are cured at a time, the fabrication process can be completed in only two minutes, no matter how complex the patterns are. Compared to the widely used fabrication method of mPADs, wax printing, DMPC provides an alternative way to fabricate mPAD with different hydrophobic barriers materials, which provides the possibility of designing different mPADs according to the application environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.