For the lack of labels in infrared and visible image fusion network, an infrared and visible image fusion model based on multi-channel unsupervised convolutional neural network (CNN) is proposed in this paper, in order to extract more detailed information through multi-channel inputs. In contrast to conventional unsupervised fusion network, the proposed network contains three channels for extracting infrared features, visible features and common features of infrared and visible images, respectively. The square loss function is used to train the network. Pairs of infrared and visible images are input to DenseNet to extract as more useful features as possible. A fusion module is designed to fuse the extracted features for testing. Experimental results show that the proposed method can preserve both the clear target of infrared and detailed information of visible images simultaneously. Experiments also demonstrate the superiority of the proposed method over the state-of-the-art methods in objective metrics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.